test_normalization_wrapper.py 3.0 KB
Newer Older
C
caoying03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import unittest
import paddle.v2.fluid as fluid
import paddle.v2.fluid.core as core
import numpy as np


class TestNormalization(unittest.TestCase):
    data_desc = {"name": "input", "shape": (2, 3, 7)}

    def gen_random_input(self):
        """Generate random input data.
        """
        self.data = np.random.random(
            size=self.data_desc["shape"]).astype("float32")

    def set_program(self, axis, epsilon):
        """Build the test program.
        """
        data = fluid.layers.data(
            name=self.data_desc["name"],
            shape=self.data_desc["shape"],
            dtype="float32",
            append_batch_size=False)
        data.stop_gradient = False
        l2_norm = fluid.layers.l2_normalize(x=data, axis=axis, epsilon=epsilon)
        out = fluid.layers.reduce_sum(l2_norm, dim=None)

        fluid.backward.append_backward(loss=out)
        self.fetch_list = [l2_norm]

    def run_program(self):
        """Run the test program.
        """
        places = [core.CPUPlace()]
        if core.is_compile_gpu():
            places.append(core.CUDAPlace(0))

        for place in places:
            self.set_inputs(place)
            exe = fluid.Executor(place)

            output = exe.run(fluid.default_main_program(),
                             feed=self.inputs,
                             fetch_list=self.fetch_list,
                             return_numpy=True)
            self.op_output = output

    def set_inputs(self, place):
        """Set the randomly generated data to the test program.
        """
        self.inputs = {}
        tensor = fluid.Tensor()
        tensor.set(self.data, place)
        self.inputs[self.data_desc["name"]] = tensor

    def l2_normalize(self, data, axis, epsilon):
        """ Compute the groundtruth.
        """
        output = data * np.reciprocal(
            np.sum(np.square(data), axis=axis, keepdims=True))
        return output

    def test_l2_normalize(self):
        """ Test the python wrapper for l2_normalize.
        """
        axis = 1
        #TODO(caoying) epsilon is not supported due to lack of a maximum_op.
        epsilon = 1e-6

        self.gen_random_input()

        self.set_program(axis, epsilon)
        self.run_program()

        expect_output = self.l2_normalize(self.data, axis, epsilon)

        # check output
        self.assertTrue(np.allclose(self.op_output, expect_output, atol=0.001))


if __name__ == '__main__':
    unittest.main()