test_image_classification.py 8.2 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

Q
Qiao Longfei 已提交
17
import paddle.v2 as paddle
18
import paddle.v2.fluid as fluid
19
import contextlib
20 21
import math
import sys
22 23
import numpy
import unittest
Q
Qiao Longfei 已提交
24 25


26
def resnet_cifar10(input, depth=32):
Q
Qiao Longfei 已提交
27
    def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'):
28
        tmp = fluid.layers.conv2d(
Q
Qiao Longfei 已提交
29 30 31 32 33 34
            input=input,
            filter_size=filter_size,
            num_filters=ch_out,
            stride=stride,
            padding=padding,
            act=None,
35
            bias_attr=False)
36
        return fluid.layers.batch_norm(input=tmp, act=act)
Q
Qiao Longfei 已提交
37

38
    def shortcut(input, ch_in, ch_out, stride):
Q
Qiao Longfei 已提交
39
        if ch_in != ch_out:
40
            return conv_bn_layer(input, ch_out, 1, stride, 0, None)
Q
Qiao Longfei 已提交
41 42 43
        else:
            return input

Q
Qiao Longfei 已提交
44 45 46
    def basicblock(input, ch_in, ch_out, stride):
        tmp = conv_bn_layer(input, ch_out, 3, stride, 1)
        tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None)
47
        short = shortcut(input, ch_in, ch_out, stride)
48
        return fluid.layers.elementwise_add(x=tmp, y=short, act='relu')
Q
Qiao Longfei 已提交
49

50 51
    def layer_warp(block_func, input, ch_in, ch_out, count, stride):
        tmp = block_func(input, ch_in, ch_out, stride)
Q
Qiao Longfei 已提交
52
        for i in range(1, count):
53
            tmp = block_func(tmp, ch_out, ch_out, 1)
Q
Qiao Longfei 已提交
54 55 56 57 58
        return tmp

    assert (depth - 2) % 6 == 0
    n = (depth - 2) / 6
    conv1 = conv_bn_layer(
Q
Qiao Longfei 已提交
59 60 61 62
        input=input, ch_out=16, filter_size=3, stride=1, padding=1)
    res1 = layer_warp(basicblock, conv1, 16, 16, n, 1)
    res2 = layer_warp(basicblock, res1, 16, 32, n, 2)
    res3 = layer_warp(basicblock, res2, 32, 64, n, 2)
63
    pool = fluid.layers.pool2d(
Q
Qiao Longfei 已提交
64
        input=res3, pool_size=8, pool_type='avg', pool_stride=1)
Q
Qiao Longfei 已提交
65 66 67
    return pool


68
def vgg16_bn_drop(input):
Q
Qiao Longfei 已提交
69
    def conv_block(input, num_filter, groups, dropouts):
70
        return fluid.nets.img_conv_group(
Q
Qiao Longfei 已提交
71 72 73 74 75 76 77 78
            input=input,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * groups,
            conv_filter_size=3,
            conv_act='relu',
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
79
            pool_type='max')
Q
Qiao Longfei 已提交
80

81 82 83 84 85
    conv1 = conv_block(input, 64, 2, [0.3, 0])
    conv2 = conv_block(conv1, 128, 2, [0.4, 0])
    conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
    conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
    conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
Q
Qiao Longfei 已提交
86

87 88
    drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
    fc1 = fluid.layers.fc(input=drop, size=512, act=None)
89
    bn = fluid.layers.batch_norm(input=fc1, act='relu')
90 91
    drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
    fc2 = fluid.layers.fc(input=drop2, size=512, act=None)
Q
Qiao Longfei 已提交
92 93 94
    return fc2


95
def train(net_type, use_cuda, save_dirname):
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    classdim = 10
    data_shape = [3, 32, 32]

    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    if net_type == "vgg":
        print("train vgg net")
        net = vgg16_bn_drop(images)
    elif net_type == "resnet":
        print("train resnet")
        net = resnet_cifar10(images, 32)
    else:
        raise ValueError("%s network is not supported" % net_type)

    predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(x=cost)
114 115 116 117
    acc = fluid.layers.accuracy(input=predict, label=label)

    # Test program 
    test_program = fluid.default_main_program().clone()
118 119 120 121 122 123 124 125 126 127 128 129

    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
    optimizer.minimize(avg_cost)

    BATCH_SIZE = 128
    PASS_NUM = 1

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.cifar.train10(), buf_size=128 * 10),
        batch_size=BATCH_SIZE)

130 131 132
    test_reader = paddle.batch(
        paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE)

133 134 135 136 137 138 139
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
    exe.run(fluid.default_startup_program())

    loss = 0.0
    for pass_id in range(PASS_NUM):
140 141 142 143 144 145 146 147 148 149
        for batch_id, data in enumerate(train_reader()):
            exe.run(feed=feeder.feed(data))

            if (batch_id % 10) == 0:
                acc_list = []
                avg_loss_list = []
                for tid, test_data in enumerate(test_reader()):
                    loss_t, acc_t = exe.run(program=test_program,
                                            feed=feeder.feed(test_data),
                                            fetch_list=[avg_cost, acc])
150 151
                    if math.isnan(float(loss_t)):
                        sys.exit("got NaN loss, training failed.")
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
                    acc_list.append(float(acc_t))
                    avg_loss_list.append(float(loss_t))
                    break  # Use 1 segment for speeding up CI

                acc_value = numpy.array(acc_list).mean()
                avg_loss_value = numpy.array(avg_loss_list).mean()

                print(
                    'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
                    format(pass_id, batch_id + 1,
                           float(avg_loss_value), float(acc_value)))

                if acc_value > 0.01:  # Low threshold for speeding up CI
                    fluid.io.save_inference_model(save_dirname, ["pixel"],
                                                  [predict], exe)
                    return


def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

    # Use fluid.io.load_inference_model to obtain the inference program desc,
    # the feed_target_names (the names of variables that will be feeded 
    # data using feed operators), and the fetch_targets (variables that 
    # we want to obtain data from using fetch operators).
    [inference_program, feed_target_names,
     fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

    # The input's dimension of conv should be 4-D or 5-D.
    tensor_img = numpy.random.rand(1, 3, 32, 32).astype("float32")

    # Construct feed as a dictionary of {feed_target_name: feed_target_data}
    # and results will contain a list of data corresponding to fetch_targets.
    results = exe.run(inference_program,
                      feed={feed_target_names[0]: tensor_img},
                      fetch_list=fetch_targets)
    print("infer results: ", results[0])


def main(net_type, use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the trained model
    save_dirname = "image_classification_" + net_type + ".inference.model"

    train(net_type, use_cuda, save_dirname)
    infer(use_cuda, save_dirname)
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234


class TestImageClassification(unittest.TestCase):
    def test_vgg_cuda(self):
        with self.scope_prog_guard():
            main('vgg', use_cuda=True)

    def test_resnet_cuda(self):
        with self.scope_prog_guard():
            main('resnet', use_cuda=True)

    def test_vgg_cpu(self):
        with self.scope_prog_guard():
            main('vgg', use_cuda=False)

    def test_resnet_cpu(self):
        with self.scope_prog_guard():
            main('resnet', use_cuda=False)

    @contextlib.contextmanager
    def scope_prog_guard(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield


if __name__ == '__main__':
    unittest.main()