trainer.py 11.3 KB
Newer Older
H
Helin Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
Y
Yu Yang 已提交
16 17 18 19 20
import core
import framework
import executor
import data_feeder
import contextlib
J
Jeff Wang 已提交
21
import io
Q
Qiao Longfei 已提交
22
import unique_name
Y
Yu Yang 已提交
23 24 25

# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
import optimizer as opt_module
Y
Yancey 已提交
26
from transpiler import distribute_transpiler
Y
Yu Yang 已提交
27

H
Helin Wang 已提交
28 29
__all__ = [
    'Trainer',
Y
Yu Yang 已提交
30 31 32 33
    'BeginEpochEvent',
    'EndEpochEvent',
    'BeginStepEvent',
    'EndStepEvent',
H
Helin Wang 已提交
34 35 36
]


Y
Yu Yang 已提交
37 38 39 40 41 42 43 44
class BeginEpochEvent(object):
    def __init__(self, epoch_id):
        self.epoch = epoch_id


class EndEpochEvent(object):
    def __init__(self, epoch_id):
        self.epoch = epoch_id
H
Helin Wang 已提交
45

Y
Yu Yang 已提交
46 47 48 49 50 51 52 53 54 55 56

class BeginStepEvent(object):
    def __init__(self, epoch_id, step_id):
        self.epoch = epoch_id
        self.step = step_id


class EndStepEvent(object):
    def __init__(self, epoch_id, step_id):
        self.epoch = epoch_id
        self.step = step_id
H
Helin Wang 已提交
57 58


Q
Qiao Longfei 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
def check_and_get_place(place):
    """
    Check the type of place or get the default place
    Args:
        place(None|core.CUDAPlace|core.CPUPlace): the place that trainer will be executed on.

    Raises:
        TypeError if the type mismatched.

    Returns:
        the original place if it is not None.
        if fluid is compiled with CUDA, returns CUDAPlace(0) by default.
        Otherwise returns CPUPlace by default.
    """
    if place is None:
        if core.is_compiled_with_cuda():
            return core.CUDAPlace(0)
        else:
            return core.CPUPlace()
    else:
        if not isinstance(place, core.CUDAPlace) and not isinstance(
                place, core.CPUPlace):
            raise TypeError("Place should be either CUDAPlace or CPUPlace")
        return place


H
Helin Wang 已提交
85
class Trainer(object):
Y
Yu Yang 已提交
86 87 88
    """

    Args:
Q
Qiao Longfei 已提交
89 90
        train_func(callable): A function which will return loss. The loss must be a scalar.
        infer_func(callable): A function which will return predict, used to save inference model
Y
Yu Yang 已提交
91 92 93 94
        optimizer(optimizer.Optimizer): The optimizer should be an instance of Optimizer
        place: The device place of this trainer.
    """

Q
Qiao Longfei 已提交
95 96 97 98 99 100
    def __init__(self,
                 train_func,
                 infer_func,
                 optimizer,
                 param_path=None,
                 place=None):
H
Helin Wang 已提交
101
        # 1. we need to generate a framework.Program by calling
H
Helin Wang 已提交
102
        # program_func. Reference: fluid.program_guard in
H
Helin Wang 已提交
103
        # test_word2vec.py
Q
Qiao Longfei 已提交
104 105 106 107
        if not isinstance(optimizer, opt_module.Optimizer):
            raise TypeError("The optimizer should be an instance of Optimizer")

        self.infer_func = infer_func
H
Helin Wang 已提交
108
        self.scope = core.Scope()
Y
Yu Yang 已提交
109 110 111 112 113

        self.startup_program = framework.Program()
        self.train_program = framework.Program()

        with framework.program_guard(self.train_program, self.startup_program):
Q
Qiao Longfei 已提交
114
            program_func_outs = train_func()
F
fengjiayi 已提交
115 116 117
            self.test_outputs = program_func_outs if isinstance(
                program_func_outs, list) else [program_func_outs]
            self.test_program = self.train_program.clone()
Y
Yu Yang 已提交
118 119 120
            if not isinstance(optimizer, opt_module.Optimizer):
                raise TypeError(
                    "The optimizer should be an instance of Optimizer")
F
fengjiayi 已提交
121 122
            # The fisrt element of program_func_outs is loss.
            loss = self.test_outputs[0]
123
            optimize_ops, params_grads = optimizer.minimize(loss)
Y
Yu Yang 已提交
124

Q
Qiao Longfei 已提交
125
        self.place = check_and_get_place(place)
H
Helin Wang 已提交
126

Q
Qiao Longfei 已提交
127
        self._dist_transpile_if_necessary(optimize_ops, params_grads)
128

H
Helin Wang 已提交
129 130
        # 2. move the default_main_program to self.program and run the
        # default_startup program on an empty core.Scope()
Y
Yu Yang 已提交
131
        # Run startup program
132 133 134
        with self._prog_and_scope_guard():
            exe = executor.Executor(place)
            exe.run(self.startup_program)
H
Helin Wang 已提交
135

H
Helin Wang 已提交
136 137
        if param_path:
            # load params from param_path into scope
J
Jeff Wang 已提交
138
            io.load_persistables(exe, dirname=param_path)
Y
Yu Yang 已提交
139

Q
Qiao Longfei 已提交
140
    def _dist_transpile_if_necessary(self, optimize_ops, params_grads):
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
        if "PADDLE_TRAINING_ROLE" not in os.environ:
            return

        # the port of all pservers, needed by both trainer and pserver
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        # comma separated ips of all pservers, needed by trainer and
        # pserver
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)
        # total number of workers/trainers in the job, needed by
        # trainer and pserver
        trainers = int(os.getenv("PADDLE_TRAINERS"))
        # the IP of the local machine, needed by pserver only
        current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
        # the unique trainer id, starting from 0, needed by trainer
        # only
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        # the role, should be either PSERVER or TRAINER
        training_role = os.getenv("PADDLE_TRAINING_ROLE")
        with self._prog_and_scope_guard():
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if training_role == "PSERVER":
                self.train_program = t.get_pserver_program(current_endpoint)
                self.startup_program = t.get_startup_program(current_endpoint,
                                                             self.train_program)
            elif training_role == "TRAINER":
                self.train_program = t.get_trainer_program()
            else:
                raise ValueError(
                    'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
                )
H
Helin Wang 已提交
177

Y
Yu Yang 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    def train(self,
              num_epochs,
              event_handler,
              reader=None,
              parallel=False,
              feed_order=None):
        """
        Train the model.

        Args:
            num_epochs: The number of epoch. An epoch will process all data in reader
            event_handler: The event handler. A function with type (ev:Event)->void
            reader:
            parallel: True if use multi-CPUs or multi-GPUs
            feed_order: Feeding order of reader. None will following the defining
                order in program

        Returns:

        """
        if parallel:
            raise NotImplementedError(
                "Parallel Executor version of trainer is not implemented")

202 203 204 205 206 207 208
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "")
        if training_role == "PSERVER":
            with self._prog_and_scope_guard():
                exe = executor.Executor(self.place)
                exe.run()
                return

Y
Yu Yang 已提交
209
        self._train_by_executor(num_epochs, event_handler, reader, feed_order)
H
Helin Wang 已提交
210

F
fengjiayi 已提交
211 212 213 214 215 216 217 218 219 220 221
    def test(self, reader, feed_order=None):
        """
        Test the model on given test data

        Args:
            reader: The reader that yields test data.
            feed_order: Feeding order of reader. None will following the defining
                order in program
        """

        return self._test_by_executor(reader, feed_order, self.test_outputs)
Y
Yu Yang 已提交
222

H
Helin Wang 已提交
223 224
    def save_params(self, param_path):
        # reference: save_persistables in io.py
225 226 227
        with self._prog_and_scope_guard():
            exe = executor.Executor(self.place)
            io.save_persistables(exe, dirname=param_path)
Y
Yu Yang 已提交
228

Q
Qiao Longfei 已提交
229 230 231 232 233 234 235 236
    def save_inference_model(self, model_path):
        inference_program = framework.Program()
        with framework.program_guard(inference_program):
            with unique_name.guard():
                predict_var = self.infer_func()
        predict_var = self.train_program.block(0).var(predict_var.name)
        exe = executor.Executor(self.place)
        io.save_inference_model(model_path, [], [predict_var], exe)
Y
Yu Yang 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

    @contextlib.contextmanager
    def _prog_and_scope_guard(self):
        with framework.program_guard(
                main_program=self.train_program,
                startup_program=self.startup_program):
            with executor.scope_guard(self.scope):
                yield

    def _train_by_executor(self, num_epochs, event_handler, reader, feed_order):
        """
        Train by Executor and single device.

        Args:
            num_epochs:
            event_handler:
            reader:
            feed_order:

        Returns:

        """
        with self._prog_and_scope_guard():
F
fengjiayi 已提交
260
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
Y
Yu Yang 已提交
261 262
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
F
fengjiayi 已提交
263
            exe = executor.Executor(self.place)
Y
Yu Yang 已提交
264 265 266 267 268 269 270
            for epoch_id in range(num_epochs):
                event_handler(BeginEpochEvent(epoch_id))
                for step_id, data in enumerate(reader()):
                    event_handler(BeginStepEvent(epoch_id, step_id))
                    exe.run(feed=feeder.feed(data), fetch_list=[])
                    event_handler(EndStepEvent(epoch_id, step_id))
                event_handler(EndEpochEvent(epoch_id))
F
fengjiayi 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

    def _test_by_executor(self, reader, feed_order, fetch_list):
        with executor.scope_guard(self.scope):
            feed_var_list = build_feed_var_list(self.test_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            exe = executor.Executor(self.place)
            accumulated = len(fetch_list) * [0]
            count = 0
            for data in reader():
                outs = exe.run(program=self.test_program,
                               feed=feeder.feed(data),
                               fetch_list=fetch_list)
                accumulated = [x[0] + x[1][0] for x in zip(accumulated, outs)]
                count += 1

            return [x / count for x in accumulated]


def build_feed_var_list(program, feed_order):
    if not isinstance(program, framework.Program):
        raise TypeError("The 'program' should be an object of Program")

    if feed_order is None:
        feed_var_list = [
            var for var in program.global_block().vars.itervalues()
            if var.is_data
        ]
    elif isinstance(feed_order, list):
        feed_var_list = [
            program.global_block().var(var_name) for var_name in feed_order
        ]
    else:
        if not isinstance(feed_order, dict):
            raise TypeError(
                "The 'feed_order' should be either None, list or dict.")
        if not sorted(feed_order.values()) == range(len(feed_order)):
            raise ValueError(
                "The values of 'feed_order' should be a permutation of [0, len(feed_order))"
            )
        sorted_pair_list = sorted(feed_order.items(), key=lambda item: item[1])
        feed_var_list = [
            program.global_block().var(pair[0]) for pair in sorted_pair_list
        ]
    return feed_var_list