sequence_reshape_op.cc 5.2 KB
Newer Older
1
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2 3 4 5 6 7 8 9 10 11 12 13
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Y
yangyaming 已提交
14

Y
Yi Wang 已提交
15 16
#include "paddle/fluid/operators/sequence_reshape_op.h"
#include "paddle/fluid/framework/ddim.h"
Y
yangyaming 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

class SequenceReshapeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SequenceReshapeOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SequenceReshapeOp should not be null.");
    auto x_dims = ctx->GetInputDim("X");
Y
yangyaming 已提交
30
    auto x_numel = product(x_dims);
Y
yangyaming 已提交
31
    PADDLE_ENFORCE_EQ(x_dims.size(), 2U, "Rank of Input(X) should be 2.");
Y
yangyaming 已提交
32
    int new_dim = ctx->Attrs().Get<int>("new_dim");
33 34 35 36 37 38 39
    if (ctx->IsRuntime()) {
      ctx->SetOutputDim("Out",
                        {x_numel / new_dim, static_cast<int64_t>(new_dim)});
    } else {
      // when compiling, the batch size is undetermined, just set to -1
      ctx->SetOutputDim("Out", {-1, static_cast<int64_t>(new_dim)});
    }
Y
yangyaming 已提交
40 41 42 43 44
  }
};

class SequenceReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
45
  void Make() override {
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    AddInput("X",
             "(LoDTensor, default LoDTensor<float>) A 2-D LoDTensor with shape "
             "being [N, M].");
    AddOutput("Out",
              "(LoDTensor, default LoDTensor<float>) A 2-D LoDTensor with "
              "shape [T, new_dim] where T is calculated based on X.lod, M and "
              "new_dim.");
    AddAttr<int>("new_dim", "Sequence dimension of the output LoDTensor.");
    AddComment(R"DOC(
Sequence Reshape Operator.

This operator will rearrange the input sequences. The new dimension is set by
attribute and length of each sequence may change longer or shorter which is
decided by original length, original dimension and new dimension. The following
example will help to illustrate the function of this operator:

x is a LoDTensor:
    x.lod  = [[0, 2, 6]]
Y
yangyaming 已提交
64 65
    x.data = [[1, 2], [3, 4],
              [5, 6], [7, 8], [9, 10], [11, 12]]
66 67 68 69 70
    x.dims = [6, 2]

set new_dim = 4

then out is a LoDTensor:
Y
yangyaming 已提交
71 72 73
    out.lod  = [[0, 1, 3]]
    out.data = [[1, 2, 3, 4],
                [5, 6, 7, 8], [9, 10, 11, 12]]
74 75 76 77 78 79 80
    out.dims = [3, 4]

Currently, only 1-level LoDTensor is supported and please make sure (original
length * original dimension) can be divided by new_dim with no remainder for
each sequence.

)DOC");
Y
yangyaming 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
  }
};

class SequenceReshapeGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(
        ctx->HasInput(framework::GradVarName("Out")),
        "Input(Out@GRAD) of SequenceReshapeGradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SequenceReshapeGradOp should  not be null.");

    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
  }
};

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
class SequenceReshapeGradOpMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op_desc_ptr = new framework::OpDesc();
    op_desc_ptr->SetType("sequence_reshape_grad");
    op_desc_ptr->SetInput("X", Input("X"));
    op_desc_ptr->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op_desc_ptr->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op_desc_ptr->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(op_desc_ptr);
  }
};

Y
yangyaming 已提交
116 117 118 119 120
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(sequence_reshape, ops::SequenceReshapeOp,
121
                  ops::SequenceReshapeOpMaker, ops::SequenceReshapeGradOpMaker);
Y
yangyaming 已提交
122 123 124
REGISTER_OPERATOR(sequence_reshape_grad, ops::SequenceReshapeGradOp);
REGISTER_OP_CPU_KERNEL(
    sequence_reshape,
Y
yangyaming 已提交
125 126 127 128
    ops::SequenceReshapeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceReshapeKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceReshapeKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequenceReshapeKernel<paddle::platform::CPUDeviceContext, int64_t>);
Y
yangyaming 已提交
129 130
REGISTER_OP_CPU_KERNEL(
    sequence_reshape_grad,
Y
yangyaming 已提交
131 132 133 134
    ops::SequenceReshapeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceReshapeGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceReshapeGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SequenceReshapeGradKernel<paddle::platform::CPUDeviceContext, int>);