ngraph_engine.cc 21.5 KB
Newer Older
B
baojun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>

#include <algorithm>
#include <map>
19
#include <memory>
B
baojun 已提交
20
#include <string>
21 22
#include <unordered_set>
#include <utility>
B
baojun 已提交
23 24 25 26 27 28 29 30 31 32
#include <vector>

#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/var_type.h"
33
#include "paddle/fluid/operators/ngraph/ngraph_bridge.h"
B
baojun 已提交
34 35 36 37 38 39 40 41
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"

namespace paddle {
namespace operators {

static ngraph::Shape Ddim2Shape(const framework::DDim& dims) {
  ngraph::Shape sp;
  for (int i = 0; i < dims.size(); ++i) {
42
    sp.emplace_back(dims[i]);
B
baojun 已提交
43 44 45 46
  }
  return sp;
}

47 48 49 50 51 52 53 54 55
static framework::DDim Shape2Ddim(const ngraph::Shape& shape) {
  std::vector<int64_t> dims;
  for (size_t i = 0; i < shape.size(); ++i) {
    int64_t k = shape[i];
    dims.emplace_back(k);
  }
  return framework::make_ddim(dims);
}

B
baojun 已提交
56 57 58 59 60 61
static std::map<framework::proto::VarType::Type, ngraph::element::Type>
    pd2ng_type_map = {
        {framework::proto::VarType::FP32, ngraph::element::f32},
        {framework::proto::VarType::FP64, ngraph::element::f64},
        {framework::proto::VarType::INT32, ngraph::element::i32},
        {framework::proto::VarType::INT64, ngraph::element::i64},
62
        {framework::proto::VarType::UINT8, ngraph::element::u8},
63 64 65 66 67 68 69 70
        {framework::proto::VarType::BOOL, ngraph::element::boolean}};

static std::map<ngraph::element::Type, framework::proto::VarType::Type>
    ng2pd_type_map = {
        {ngraph::element::f32, framework::proto::VarType::FP32},
        {ngraph::element::f64, framework::proto::VarType::FP64},
        {ngraph::element::i32, framework::proto::VarType::INT32},
        {ngraph::element::i64, framework::proto::VarType::INT64},
71
        {ngraph::element::u8, framework::proto::VarType::UINT8},
72 73 74 75
        {ngraph::element::boolean, framework::proto::VarType::BOOL}};

std::vector<std::string> NgraphEngine::feed_vars = {};

76 77 78
std::weak_ptr<ngraph::runtime::Backend> NgraphEngine::wp_backend_;

std::mutex NgraphEngine::ng_mutex_;
B
baojun 已提交
79 80

static std::vector<std::vector<int>> NgraphOpIntervals(
81 82
    std::vector<std::unique_ptr<framework::OperatorBase>>* ops) {
  NgraphEngine::feed_vars.clear();
B
baojun 已提交
83
  std::vector<std::vector<int>> intervals;
84 85

  int size = ops->size();
86
  int left = 0, feed_idx = -1;
B
baojun 已提交
87
  while (left < size && ops->at(left)->Type() != framework::kFeedOpType &&
88
         ops->at(left)->Type() != "read" &&
B
baojun 已提交
89
         ops->at(left)->Type() != framework::kFetchOpType) {
B
baojun 已提交
90 91
    ++left;
  }
92

93 94 95 96 97 98 99
  if (left < size) {
    auto op_type = ops->at(left)->Type();
    if (op_type == framework::kFeedOpType || op_type == "read") {
      feed_idx = left;
    }
  }

100 101
  while (left < size && (ops->at(left)->Type() == framework::kFeedOpType ||
                         ops->at(left)->Type() == "read")) {
102 103 104 105 106
    for (auto& var_name_item : ops->at(left)->Outputs()) {
      for (auto& var_name : var_name_item.second) {
        NgraphEngine::feed_vars.emplace_back(var_name);
      }
    }
B
baojun 已提交
107 108 109 110
    ++left;
  }

  int right = left;
111
  while (right < size && ops->at(right)->Type() != framework::kFetchOpType) {
B
baojun 已提交
112 113 114
    ++right;
  }

115 116 117 118 119
  int index = right;
  while (index < size && ops->at(index)->Type() == framework::kFetchOpType) {
    ++index;
  }

B
baojun 已提交
120 121 122 123
  if (left == size || ops->at(left)->Type() == framework::kFetchOpType) {
    left = 0;
  }

B
baojun 已提交
124 125 126
  // (left, right - 1) represents indices between feed and fetch
  int pivot = left;
  while (pivot < right) {
127
    auto op_type = ops->at(pivot)->Type();
128
    if (!NgraphBridge::isSupported(ops->at(pivot))) {
B
baojun 已提交
129 130 131
      ++pivot;
    } else {
      int start = pivot, end = start;
132
      while (pivot < right && (NgraphBridge::isSupported(ops->at(pivot)))) {
B
baojun 已提交
133 134 135 136
        ++pivot;
        ++end;
      }
      std::vector<int> interval = {start, end};
137 138 139
      if (feed_idx != -1 && start > feed_idx) {
        intervals.emplace_back(interval);
      }
B
baojun 已提交
140 141 142 143 144
    }
  }  // end while
  return intervals;
}

145 146 147 148 149 150 151 152
static void SubstituteNgraphOp(
    std::vector<std::unique_ptr<framework::OperatorBase>>* ops,
    std::string engine_key, std::string block_str, std::vector<int> interval) {
  framework::OpDesc ng_op_desc(nullptr);
  ng_op_desc.SetType("ngraph_engine");
  ng_op_desc.SetAttr("interval", interval);
  ng_op_desc.SetAttr("engine_key", engine_key);
  ng_op_desc.SetAttr("graph", block_str);
153 154
  ng_op_desc.SetInput("Xs", std::vector<std::string>(0));
  ng_op_desc.SetOutput("Ys", std::vector<std::string>(0));
155 156 157 158

  ops->erase(ops->begin() + interval[0], ops->begin() + interval[1]);
  ops->insert(ops->begin() + interval[0],
              framework::OpRegistry::CreateOp(ng_op_desc));
B
baojun 已提交
159 160
}

161
std::string SerializedBlock(const framework::BlockDesc& bdesc) {
162 163 164 165 166
  framework::proto::BlockDesc block_proto;
  framework::BlockDesc block_desc(nullptr, &block_proto);
  block_desc.Proto()->set_parent_idx(-1);
  block_desc.Proto()->set_idx(0);

167
  for (auto& op_desc : bdesc.AllOps()) {
168 169 170
    auto* op = block_desc.AppendOp();
    *op->Proto() = *op_desc->Proto();
  }
171 172 173 174 175 176

  auto* vars = block_desc.Proto()->mutable_vars();
  for (auto& var_desc : bdesc.AllVars()) {
    *vars->Add() = *var_desc->Proto();
  }

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
  return block_desc.Proto()->SerializeAsString();
}

std::string GenerateEngineKey(const framework::BlockDesc& bdesc) {
  framework::proto::BlockDesc block_proto;
  framework::BlockDesc block_desc(nullptr, &block_proto);
  block_desc.Proto()->set_parent_idx(-1);
  block_desc.Proto()->set_idx(0);

  for (auto& op_desc : bdesc.AllOps()) {
    auto* op = block_desc.AppendOp();
    *op->Proto() = *op_desc->Proto();
  }
  auto engine_key = std::to_string(
      std::hash<std::string>()(block_desc.Proto()->SerializeAsString()));
  return engine_key;
}

std::string GenerateEngineKey(const std::vector<std::string>& engine_inputs,
                              const std::vector<std::string>& engine_outputs,
                              int size) {
  std::string engine_hash_key = "";
  for (auto name : engine_inputs) {
    engine_hash_key += name;
  }
  for (auto name : engine_outputs) {
    engine_hash_key += name;
  }
  engine_hash_key += std::to_string(size);
  auto engine_key = std::to_string(std::hash<std::string>()(engine_hash_key));
  return engine_key;
}

void NgraphEngine::FuseNgraphOps(
    const framework::BlockDesc& block_desc,
    std::vector<std::unique_ptr<framework::OperatorBase>>* ops) {
  auto intervals = NgraphOpIntervals(ops);
214
  std::string serialized_block = SerializedBlock(block_desc);
215
  std::string engine_key =
216
      std::to_string(std::hash<std::string>()(serialized_block));
217
  for (auto it = intervals.rbegin(); it != intervals.rend(); ++it) {
218
    SubstituteNgraphOp(ops, engine_key, serialized_block, *it);
B
baojun 已提交
219 220 221 222 223
  }
}

NgraphEngine::NgraphEngine(const framework::Scope& scope,
                           const platform::Place& place,
224
                           const framework::ExecutionContext& ctx)
B
baojun 已提交
225 226 227 228 229 230 231
    : scope_(scope), place_(place) {
  var_in_node_map_ = std::make_shared<
      std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>();

  var_node_map_ = std::make_shared<
      std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>();

232 233 234 235 236 237 238 239 240 241 242 243 244 245
  std::lock_guard<std::mutex> lock(ng_mutex_);

  if (!wp_backend_.lock()) {
    try {
      VLOG(3) << "ngraph creating CPU  backend.";
      backend_ = ngraph::runtime::Backend::create("CPU");
    } catch (...) {
      PADDLE_THROW("Unsupported nGraph backend");
    }
    wp_backend_ = backend_;
  } else {
    backend_ = wp_backend_.lock();
  }

246
  GetNgFunction(ctx);
B
baojun 已提交
247 248
}

249 250 251 252 253 254 255 256
void NgraphEngine::Prepare(const framework::ExecutionContext& ctx) {
  auto interval = ctx.Attr<std::vector<int>>("interval");
  std::string serialized_graph = ctx.Attr<std::string>("graph");

  framework::proto::BlockDesc block_proto;
  if (!serialized_graph.empty()) block_proto.ParseFromString(serialized_graph);
  framework::BlockDesc block_desc(nullptr, &block_proto);

257
  for (auto& var : block_desc.AllVars()) {
B
baojun 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    if (!(var->GetType() == framework::proto::VarType::SELECTED_ROWS ||
          var->GetType() == framework::proto::VarType::LOD_TENSOR ||
          var->GetType() == framework::proto::VarType::LOD_TENSOR_ARRAY)) {
      continue;
    }

    auto var_name = var->Name();
    if (var->Name() == framework::kEmptyVarName) {
      continue;
    }

    if (var_name != framework::kFeedOpType &&
        var_name != framework::kFetchOpType) {
      auto pd_type = var->GetDataType();
      if (pd2ng_type_map.find(pd_type) == pd2ng_type_map.end()) {
        PADDLE_THROW("Data type of var %s not found in pd2ng_type_map",
                     var_name);
      }
      var_type_map_[var_name] = pd2ng_type_map[pd_type];
    }

    if (var->Persistable()) {
      persistables_.insert(var->Name());
    }
  }

284
  std::vector<paddle::framework::OpDesc*> ops_desc;
285
  for (auto op_desc : block_desc.AllOps()) {
286
    ops_desc.emplace_back(op_desc);
B
baojun 已提交
287
    if (op_desc->Type().find("_grad") != std::string::npos) {
288
      this->is_test_ = false;
B
baojun 已提交
289 290 291
    }
  }

292 293 294 295 296 297
  int idx = interval[0];
  while (idx < interval[1]) {
    this->fused_ops_.emplace_back(
        framework::OpRegistry::CreateOp(*(ops_desc[idx])));
    ++idx;
  }
298
  while (idx < static_cast<int>(ops_desc.size())) {
299 300
    auto op_desc = ops_desc.at(idx);
    for (auto& var_name_item : op_desc->Inputs()) {
B
baojun 已提交
301
      for (auto& var_name : var_name_item.second) {
302
        this->post_op_inputs_.insert(var_name);
B
baojun 已提交
303 304
      }
    }
305
    ++idx;
B
baojun 已提交
306
  }
307

308 309 310 311 312 313 314 315 316 317 318
  auto input_vars = ctx.Inputs("Xs");
  if (!input_vars.empty()) {
    feed_vars = input_vars;
    var_in_ = input_vars;
  }

  auto output_vars = ctx.Outputs("Ys");
  if (!output_vars.empty()) {
    var_out_ = output_vars;
  }

319 320 321
  if (var_in_.empty() && var_out_.empty()) {
    BuildNgIO(ops_desc, interval);
  }
322

323 324 325 326 327 328
  for (size_t i = 0; i < var_in_.size(); ++i) {
    auto var_name = var_in_[i];
    if (persistables_.find(var_name) == persistables_.end()) {
      var_in_updates_.emplace_back(i);
    }
  }
B
baojun 已提交
329 330
}

331 332
void NgraphEngine::BuildNgIO(const std::vector<framework::OpDesc*>& ops_desc,
                             const std::vector<int>& interval) {
B
baojun 已提交
333 334
  std::unordered_set<std::string> inputs;
  std::unordered_set<std::string> outputs;
335

336 337
  for (int i = interval[0]; i < interval[1]; ++i) {
    auto op = ops_desc[i];
B
baojun 已提交
338 339 340 341 342 343
    for (auto& var_name_item : op->Inputs()) {
      for (auto& var_name : var_name_item.second) {
        inputs.insert(var_name);
        const bool is_output = outputs.find(var_name) != outputs.end();
        if (!is_output &&
            std::find(var_in_.begin(), var_in_.end(), var_name) ==
344 345
                var_in_.end() &&
            scope_.FindVar(var_name)) {
B
baojun 已提交
346
          // fill var_in here to keep lhs and rhs order
347
          this->var_in_.emplace_back(var_name);
B
baojun 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
        }
      }
    }

    for (auto& var_name_item : op->Outputs()) {
      PADDLE_ENFORCE_LE(var_name_item.second.size(), 1,
                        "op %s has more than 1 output - Not handling yet",
                        op->Type());
      for (auto& var_name : var_name_item.second) {
        outputs.insert(var_name);
      }
    }
  }

  // var_out.clear();
363 364
  for (int i = interval[0]; i < interval[1]; ++i) {
    auto op = ops_desc[i];
B
baojun 已提交
365 366 367 368 369
    for (auto& var_name_item : op->Outputs()) {
      PADDLE_ENFORCE_LE(var_name_item.second.size(), 1,
                        "op %s has more than 1 output - Not handling yet",
                        op->Type());
      for (auto& var_name : var_name_item.second) {
370
        if (this->is_test_) {
371
          if (post_op_inputs_.find(var_name) != post_op_inputs_.end()) {
372 373 374
            this->var_out_.emplace_back(var_name);
          }
        } else {
375
          if (post_op_inputs_.find(var_name) != post_op_inputs_.end() ||
376
              persistables_.find(var_name) != persistables_.end()) {
377
            this->var_out_.emplace_back(var_name);
378
          }
B
baojun 已提交
379 380 381 382
        }
      }
    }
  }
383 384 385 386 387 388 389 390 391
  // remove output duplicates
  std::unordered_set<std::string> var_out_set;
  for (int i = static_cast<int>(var_out_.size()) - 1; i >= 0; --i) {
    std::string var_name = var_out_.at(i);
    if (var_out_set.count(var_name)) {
      var_out_.erase(var_out_.begin() + i);
    }
    var_out_set.insert(var_name);
  }
B
baojun 已提交
392 393
}

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
void NgraphEngine::GetNgInputShape() {
  for (auto& var_name : var_in_) {
    auto* var = scope_.FindVar(var_name);
    if (var && var->IsType<framework::LoDTensor>()) {
      auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      auto sp = Ddim2Shape(tensor_pd->dims());
      auto ng_type = var_type_map_[var_name];
      auto prm = std::make_shared<ngraph::op::Parameter>(ng_type, sp, true);
      (*var_node_map_)[var_name] = prm;
      (*var_in_node_map_)[var_name] = prm;
    }
  }
}

void NgraphEngine::BuildNgNodes() {
  for (auto& op : fused_ops_) {
    for (auto& var_name_item : op->Outputs()) {
      for (auto& var_name : var_name_item.second) {
        if (var_node_map_->find(var_name) == var_node_map_->end()) {
          auto* var = scope_.FindVar(var_name);
          if (var && var->IsType<framework::LoDTensor>()) {
            auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
            auto& ddim = tensor_pd->dims();
            auto ng_shape = Ddim2Shape(ddim);
            auto ng_type = var_type_map_[var_name];
            auto prm = std::make_shared<ngraph::op::Parameter>(ng_type,
                                                               ng_shape, true);
            (*var_node_map_)[var_name] = prm;
          }
        }
      }
    }
  }
  NgraphBridge ngb(var_node_map_);
  for (auto& op : fused_ops_) {
    ngb.BuildNgNode(op);
  }
}

433 434
std::shared_ptr<ngraph::Function> NgraphEngine::BuildNgFunction(
    const framework::ExecutionContext& ctx) {
435
  Prepare(ctx);
436
  GetNgInputShape();
B
baojun 已提交
437 438 439 440 441
  BuildNgNodes();
  ngraph::NodeVector func_outputs;
  ngraph::ParameterVector func_inputs;

  for (auto& vo : var_out_) {
442 443
    PADDLE_ENFORCE_GT(var_node_map_->count(vo), 0,
                      "Cannot find vo %s in var_node_map_", vo);
444
    func_outputs.emplace_back(var_node_map_->at(vo));
B
baojun 已提交
445 446 447
  }

  for (auto& vi : var_in_) {
448 449
    PADDLE_ENFORCE_GT(var_node_map_->count(vi), 0,
                      "Cannot find vi %s in var_node_map_", vi);
B
baojun 已提交
450 451 452
    std::shared_ptr<ngraph::op::Parameter> prm =
        std::dynamic_pointer_cast<ngraph::op::Parameter>(
            var_in_node_map_->at(vi));
453
    func_inputs.emplace_back(prm);
B
baojun 已提交
454 455
  }

456 457 458 459
  return std::make_shared<ngraph::Function>(func_outputs, func_inputs);
}

void NgraphEngine::ClearNgCache() {
460 461 462
  auto& engine_cache = main_engine_cache::fetch();
  auto& t_in_cache_ = main_t_in_cache::fetch();

463 464 465
  auto it = engine_cache.begin();
  while (it != engine_cache.end()) {
    auto ng_engine = it->second;
466 467
    ng_engine.ngraph_backend->remove_compiled_function(ng_engine.ngraph_handle);
    ng_engine.ngraph_backend.reset();
468 469 470 471 472 473 474 475 476 477 478 479
    ++it;
  }
  engine_cache.clear();
  auto it_tensor = t_in_cache_.begin();
  while (it_tensor != t_in_cache_.end()) {
    auto t_vec = it_tensor->second;
    for (auto t_in : t_vec) {
      t_in.reset();
    }
    ++it_tensor;
  }
  t_in_cache_.clear();
B
baojun 已提交
480 481
}

482 483 484
void NgraphEngine::GetNgFunction(const framework::ExecutionContext& ctx) {
  auto interval = ctx.Attr<std::vector<int>>("interval");
  std::string engine_key = ctx.Attr<std::string>("engine_key");
485 486

  // set to flase, to debug cache or recompile everytime.
487
  bool use_cache = true;
488 489 490 491 492 493 494 495 496 497
  if (!use_cache) ClearNgCache();

  this->func_cache_key_ = "";
  for (int i = 0; i < static_cast<int>(feed_vars.size()); ++i) {
    auto* var = scope_.FindVar(feed_vars[i]);
    if (var && var->IsType<framework::LoDTensor>()) {
      auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      auto dims = tensor_pd->dims();
      for (int j = 0; j < dims.size(); ++j) {
        func_cache_key_ += std::to_string(dims[j]);
B
baojun 已提交
498 499
      }
    }
500 501 502 503 504
  }
  func_cache_key_ += std::to_string(interval[0]) + "_" +
                     std::to_string(interval[1]) + engine_key;
  func_cache_key_ = std::to_string(std::hash<std::string>()(func_cache_key_));

505 506
  auto& engine_cache = main_engine_cache::fetch();

507 508 509
  if (engine_cache.find(func_cache_key_) != engine_cache.end()) {
    if (engine_cache[func_cache_key_].persistables.size() == 0) {
      ClearNgCache();
510
    }
511
  }
512

513 514 515 516 517 518 519
  if (engine_cache.find(func_cache_key_) == engine_cache.end()) {
    if (engine_cache.size() > 5) ClearNgCache();
    auto func = BuildNgFunction(ctx);
    // Due to optimization backend may produce results in other layouts,
    // make sure we get default layout for results.
    for (auto& r : func->get_results()) {
      r->set_needs_default_layout(true);
B
baojun 已提交
520
    }
521
    engine_cache[func_cache_key_].ngraph_backend = backend_;
522 523 524 525 526 527
    engine_cache[func_cache_key_].ngraph_handle = backend_->compile(func);
    engine_cache[func_cache_key_].persistables = this->persistables_;
    engine_cache[func_cache_key_].var_in_updates = this->var_in_updates_;
    engine_cache[func_cache_key_].var_in = this->var_in_;
    engine_cache[func_cache_key_].var_out = this->var_out_;
    engine_cache[func_cache_key_].is_test = this->is_test_;
B
baojun 已提交
528 529 530 531 532
  }
}

void NgraphEngine::Run(const framework::Scope& scope,
                       const platform::Place& place) const {
533
  VLOG(3) << "NgraphEngine Run ...";
534
  std::shared_ptr<ngraph::runtime::Executable> ng_handle;
535
  std::shared_ptr<ngraph::runtime::Backend> ng_backend;
536 537 538 539 540
  const std::set<std::string>* p_persistables;
  const std::vector<size_t>* p_var_in_updates;
  const std::vector<std::string>* p_var_in;
  const std::vector<std::string>* p_var_out;

541 542 543
  auto& engine_cache = main_engine_cache::fetch();
  auto& t_in_cache_ = main_t_in_cache::fetch();

544 545
  PADDLE_ENFORCE_GT(engine_cache.count(func_cache_key_), 0,
                    "Cannot find cached data to run ngraph function");
546
  ng_handle = engine_cache[func_cache_key_].ngraph_handle;
547
  ng_backend = engine_cache[func_cache_key_].ngraph_backend;
548 549 550 551
  p_persistables = &(engine_cache[func_cache_key_].persistables);
  p_var_in_updates = &(engine_cache[func_cache_key_].var_in_updates);
  p_var_in = &(engine_cache[func_cache_key_].var_in);
  p_var_out = &(engine_cache[func_cache_key_].var_out);
B
baojun 已提交
552

553 554 555
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>>* p_t_in;
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>> t_in = {};

556 557
  auto m_parameters = ng_handle->get_parameters();
  auto m_results = ng_handle->get_results();
558
  if (is_inference_ && t_in_cache_.find(func_cache_key_) != t_in_cache_.end()) {
559 560 561 562 563 564 565 566 567 568 569
    p_t_in = &(t_in_cache_[func_cache_key_]);
    for (size_t i = 0; i < p_var_in_updates->size(); ++i) {
      int index = p_var_in_updates->at(i);
      auto vi = p_var_in->at(index);
      auto sp = m_parameters[index]->get_shape();
      auto ng_type = m_parameters[index]->get_element_type();
      std::shared_ptr<ngraph::runtime::Tensor> ti;
      auto* var = scope.FindVar(vi);
      if (var && var->IsType<framework::LoDTensor>()) {
        auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
        void* pd_arr = tensor_pd->mutable_data(place, ng2pd_type_map[ng_type]);
570
        ti = ng_backend->create_tensor(ng_type, sp, pd_arr);
571
        (*p_t_in)[index] = ti;
B
baojun 已提交
572
      } else {
573
        PADDLE_THROW("Cannot find var or tensor with var name %s", vi);
B
baojun 已提交
574
      }
575 576
    }
  } else {
577
    if (is_inference_) {
578
      p_t_in = &(t_in_cache_[func_cache_key_]);
B
baojun 已提交
579
    } else {
580
      p_t_in = &t_in;
B
baojun 已提交
581
    }
582 583 584 585 586 587 588 589 590 591

    for (size_t i = 0; i < p_var_in->size(); ++i) {
      auto vi = p_var_in->at(i);
      auto sp = m_parameters[i]->get_shape();
      auto ng_type = m_parameters[i]->get_element_type();
      std::shared_ptr<ngraph::runtime::Tensor> ti;
      auto* var = scope.FindVar(vi);
      if (var && var->IsType<framework::LoDTensor>()) {
        auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
        void* pd_arr = tensor_pd->mutable_data(place, ng2pd_type_map[ng_type]);
592
        ti = ng_backend->create_tensor(ng_type, sp, pd_arr);
593 594 595 596 597
      } else {
        PADDLE_THROW("Cannot find var or tensor with var name %s", vi);
      }
      bool is_persistable =
          (p_persistables->find(vi) != p_persistables->end()) ? true : false;
598
      if (is_inference_ && is_persistable) {
599 600 601
        ti->set_stale(false);
      }
      (*p_t_in).emplace_back(ti);
B
baojun 已提交
602 603 604
    }
  }

605 606
  for (auto& op : fused_ops_) {
    framework::RuntimeContext ctx(op->Inputs(), op->Outputs(), scope_);
607
    op->RuntimeInferShape(scope_, place_, ctx);
608 609
  }

610 611 612
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>> t_out = {};
  for (size_t i = 0; i < p_var_out->size(); ++i) {
    auto vo = p_var_out->at(i);
B
baojun 已提交
613 614
    auto* var = scope.FindVar(vo);
    if (var && var->IsType<framework::LoDTensor>()) {
615 616
      auto sp = m_results[i]->get_shape();
      var->GetMutable<framework::LoDTensor>()->Resize(Shape2Ddim(sp));
B
baojun 已提交
617
      auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
618 619 620
      auto ng_type = m_results[i]->get_element_type();
      void* pd_arr = tensor_pd->mutable_data(place, ng2pd_type_map[ng_type]);
      std::shared_ptr<ngraph::runtime::Tensor> to =
621
          ng_backend->create_tensor(ng_type, sp, pd_arr);
622
      t_out.emplace_back(to);
B
baojun 已提交
623 624 625 626 627
    } else {
      PADDLE_THROW("Cannot find var or tensor with var name %s", vo);
    }
  }

628
  ng_handle->call(t_out, *p_t_in);
B
baojun 已提交
629 630 631
}  // NgraphEngine::Run
}  // namespace operators
}  // namespace paddle