static_flops.py 6.1 KB
Newer Older
Y
yukavio 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import numpy as np
import paddle
from prettytable import PrettyTable
from collections import OrderedDict
from paddle.static import Program, program_guard, Variable


class VarWrapper(object):
    def __init__(self, var, graph):
        assert isinstance(var, Variable)
        assert isinstance(graph, GraphWrapper)
        self._var = var
        self._graph = graph

    def name(self):
        """
        Get the name of the variable.
        """
        return self._var.name

    def shape(self):
        """
        Get the shape of the varibale.
        """
        return self._var.shape


class OpWrapper(object):
    def __init__(self, op, graph):
        assert isinstance(graph, GraphWrapper)
        self._op = op
        self._graph = graph

    def type(self):
        """
        Get the type of this operator.
        """
        return self._op.type

    def inputs(self, name):
        """
        Get all the varibales by the input name.
        """
        if name in self._op.input_names:
            return [
                self._graph.var(var_name) for var_name in self._op.input(name)
            ]
        else:
            return []

    def outputs(self, name):
        """
        Get all the varibales by the output name.
        """
        return [self._graph.var(var_name) for var_name in self._op.output(name)]


class GraphWrapper(object):
    """
    It is a wrapper of paddle.fluid.framework.IrGraph with some special functions
    for paddle slim framework.

    Args:
        program(framework.Program): A program with 
        in_nodes(dict): A dict to indicate the input nodes of the graph.
                        The key is user-defined and human-readable name.
                        The value is the name of Variable.
        out_nodes(dict): A dict to indicate the input nodes of the graph.
                        The key is user-defined and human-readable name.
                        The value is the name of Variable.
    """

    def __init__(self, program=None, in_nodes=[], out_nodes=[]):
        """
        """
        super(GraphWrapper, self).__init__()
        self.program = Program() if program is None else program
        self.persistables = {}
        self.teacher_persistables = {}
        for var in self.program.list_vars():
            if var.persistable:
                self.persistables[var.name] = var
        self.compiled_graph = None
        in_nodes = [] if in_nodes is None else in_nodes
        out_nodes = [] if out_nodes is None else out_nodes
        self.in_nodes = OrderedDict(in_nodes)
        self.out_nodes = OrderedDict(out_nodes)
        self._attrs = OrderedDict()

    def ops(self):
        """
        Return all operator nodes included in the graph as a set.
        """
        ops = []
        for block in self.program.blocks:
            for op in block.ops:
                ops.append(OpWrapper(op, self))
        return ops

    def var(self, name):
        """
        Get the variable by variable name.
        """
        for block in self.program.blocks:
            if block.has_var(name):
                return VarWrapper(block.var(name), self)
        return None


def count_convNd(op):
    filter_shape = op.inputs("Filter")[0].shape()
    filter_ops = np.product(filter_shape[1:])
    bias_ops = 1 if len(op.inputs("Bias")) > 0 else 0
    output_numel = np.product(op.outputs("Output")[0].shape()[1:])
    total_ops = output_numel * (filter_ops + bias_ops)
    return total_ops


def count_leaky_relu(op):
    total_ops = np.product(op.outputs("Output")[0].shape()[1:])
    return total_ops


def count_bn(op):
    output_numel = np.product(op.outputs("Y")[0].shape()[1:])
    total_ops = 2 * output_numel
    return total_ops


def count_linear(op):
    total_mul = op.inputs("Y")[0].shape()[0]
    numel = np.product(op.outputs("Out")[0].shape()[1:])
    total_ops = total_mul * numel
    return total_ops


def count_pool2d(op):
    input_shape = op.inputs("X")[0].shape()
    output_shape = op.outputs('Out')[0].shape()
    kernel = np.array(input_shape[2:]) // np.array(output_shape[2:])
    total_add = np.product(kernel)
    total_div = 1
    kernel_ops = total_add + total_div
    num_elements = np.product(output_shape[1:])
    total_ops = kernel_ops * num_elements
    return total_ops


def count_element_op(op):
    input_shape = op.inputs("X")[0].shape()
    total_ops = np.product(input_shape[1:])
    return total_ops


def _graph_flops(graph, detail=False):
    assert isinstance(graph, GraphWrapper)
    flops = 0
    table = PrettyTable(["OP Type", 'Param name', "Flops"])
    for op in graph.ops():
        param_name = ''
        if op.type() in ['conv2d', 'depthwise_conv2d']:
            op_flops = count_convNd(op)
            flops += op_flops
            param_name = op.inputs("Filter")[0].name()
        elif op.type() == 'pool2d':
            op_flops = count_pool2d(op)
            flops += op_flops

        elif op.type() in ['mul', 'matmul']:
            op_flops = count_linear(op)
            flops += op_flops
            param_name = op.inputs("Y")[0].name()
        elif op.type() == 'batch_norm':
            op_flops = count_bn(op)
            flops += op_flops
        elif op.type().startswith('element'):
            op_flops = count_element_op(op)
            flops += op_flops
        if op_flops != 0:
            table.add_row([op.type(), param_name, op_flops])
        op_flops = 0
    if detail:
        print(table)
    return flops


def static_flops(program, print_detail=False):
    graph = GraphWrapper(program)
    return _graph_flops(graph, detail=print_detail)