FirstOrderOptimizer.cpp 12.9 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/utils/Util.h"
#include "paddle/utils/Flags.h"

#include "FirstOrderOptimizer.h"

#include <cmath>

P_DEFINE_bool(log_clipping, false, "enable log clipping or not");

namespace paddle {

SparseMomentumParameterOptimizer::SparseMomentumParameterOptimizer(
    const OptimizationConfig& optConfig)
    : ParameterOptimizer(optConfig) {
  addParameterType(PARAMETER_MOMENTUM);
  addParameterType(PARAMETER_MOMENTUM_UT);
  addParameterType(PARAMETER_MOMENTUM_VT);
  alpha_ = 1;
  beta_ = 1;
  tau_ = -1;
  threshold_ = 1e+06;
}

void SparseMomentumParameterOptimizer::init(size_t numRows,
                                            const ParameterConfig* config) {
  isParameterSparse_ = numRows != 0;
  t0Vec_.resize(numRows);
  t0Vec_.assign(t0Vec_.size(), 0);
  timer_ = 0;
  momentum_ = config->momentum();
  decayRate_ = config->decay_rate();
  gamma_ = config->learning_rate();
}

void SparseMomentumParameterOptimizer::startBatch(int64_t numSamplesProcessed) {
  learningRate_ = calcLearningRate(numSamplesProcessed, pass_);
  if (isParameterSparse_) {
    tau_ = tau_ + beta_ / alpha_;
    alpha_ = alpha_ / momentum_;
    beta_ = beta_ / (1 + decayRate_ * gamma_ * learningRate_);
  }
}

void SparseMomentumParameterOptimizer::update(const VectorPtr vecs[],
                                              const ParameterConfig& paraConfig,
                                              size_t sparseId) const {
  if (sparseId != -1LU) {
    CHECK_LT(sparseId, t0Vec_.size());
    if (t0Vec_[sparseId] == 0) {
      vecs[PARAMETER_MOMENTUM_VT]->assign(*vecs[PARAMETER_VALUE]);
      t0Vec_[sparseId] = 1;
    }
    vecs[PARAMETER_MOMENTUM_UT]->add(*vecs[PARAMETER_GRADIENT],
                                     -alpha_ * gamma_ * learningRate_);
    vecs[PARAMETER_MOMENTUM_VT]->add(*vecs[PARAMETER_GRADIENT],
                                     tau_ * alpha_ * gamma_ * learningRate_);
    vecs[PARAMETER_VALUE]->add(*vecs[PARAMETER_MOMENTUM_UT],
                               tau_ / beta_ + 1.0 / alpha_,
73 74
                               *vecs[PARAMETER_MOMENTUM_VT],
                               1.0 / beta_);
Z
zhangjinchao01 已提交
75 76

  } else {
77 78 79 80 81
    vecs[PARAMETER_VALUE]->sgdUpdate(*vecs[PARAMETER_GRADIENT],
                                     *vecs[PARAMETER_MOMENTUM],
                                     learningRate_ * paraConfig.learning_rate(),
                                     paraConfig.momentum(),
                                     applyDecay_ ? paraConfig.decay_rate() : 0);
Z
zhangjinchao01 已提交
82 83 84 85 86 87 88 89 90 91 92 93
  }
}

ParameterOptimizer::TraverseCallback
SparseMomentumParameterOptimizer::needSpecialTraversal(
    const ParameterConfig& config) const {
  if (alpha_ > threshold_ && isParameterSparse_) {
    //  Restart to avoid large value multiplication
    //  1. \alpha = 1, \beta = 1, \tau = 0
    //  2. Note that \tau * u_t + v_t = \beta \theta_t, therefore:
    //     u_t should be rescaled to u_t/alpha_
    //     v_t should be reset to \theta_t
94 95
    return [this](const VectorPtr vecs[],
                  const ParameterConfig& config,
Z
zhangjinchao01 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
                  size_t sparseId) {
      vecs[PARAMETER_MOMENTUM_UT]->divScalar(alpha_);
      vecs[PARAMETER_MOMENTUM_VT]->assign(*vecs[PARAMETER_VALUE]);
    };
  } else {
    return nullptr;
  }
}

void SparseMomentumParameterOptimizer::finishBatch() {
  timer_++;
  if (!isParameterSparse_) return;
  if (alpha_ > threshold_) {
    alpha_ = 1;
    beta_ = 1;
    tau_ = -1;
  }
}

void AdagradParameterOptimizer::update(const VectorPtr vecs[],
                                       const ParameterConfig& config,
                                       size_t sparseId) const {
  vecs[PARAMETER_GRADIENT_SQURESUM1]->addSquare(*vecs[PARAMETER_GRADIENT],
                                                1.0f);
  vecs[PARAMETER_LEARNING_RATE]->add(*vecs[PARAMETER_GRADIENT_SQURESUM],
                                     *vecs[PARAMETER_GRADIENT_SQURESUM1]);
  vecs[PARAMETER_LEARNING_RATE]->add(optConfig_.ada_epsilon());
  vecs[PARAMETER_LEARNING_RATE]->invSqrt(*vecs[PARAMETER_LEARNING_RATE]);

125 126 127 128 129 130
  vecs[PARAMETER_VALUE]->sgdUpdate(*vecs[PARAMETER_GRADIENT],
                                   *vecs[PARAMETER_MOMENTUM],
                                   *vecs[PARAMETER_LEARNING_RATE],
                                   learningRate_ * config.learning_rate(),
                                   config.momentum(),
                                   applyDecay_ ? config.decay_rate() : 0);
Z
zhangjinchao01 已提交
131 132 133 134 135 136 137 138
}

ParameterOptimizer::TraverseCallback
AdagradParameterOptimizer::needSpecialTraversal(
    const ParameterConfig& config) const {
  if (numUpdates_ % kMaxNumAccumulates == 0) {
    // Move the sum to a different buffer to avoid loss of precision
    // due to too many sums.
139 140
    return [this](const VectorPtr vecs[],
                  const ParameterConfig& config,
Z
zhangjinchao01 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
                  size_t sparseId) {
      vecs[PARAMETER_GRADIENT_SQURESUM]->add(
          *vecs[PARAMETER_GRADIENT_SQURESUM1]);
      vecs[PARAMETER_GRADIENT_SQURESUM1]->zeroMem();
    };
  } else {
    return nullptr;
  }
}

void AdaDeltaParameterOptimizer::update(const VectorPtr vecs[],
                                        const ParameterConfig& config,
                                        size_t sparseId) const {
  CHECK(sparseId == -1LU) << "Sparse update is not supported";
  // E(g_t^2) = \rou * E(g_{t-1}^2) + (1-\rou) * g^2
156 157
  vecs[PARAMETER_GRADIENT_SQURESUM]->decayAddSquare(
      *vecs[PARAMETER_GRADIENT], rou_, 1.0f - rou_);
Z
zhangjinchao01 已提交
158 159 160 161

  // learn_rate = sqrt( ( E(dx_{t-1}^2) + epsilon ) / ( E(g_t^2) + epsilon ) )
  vecs[PARAMETER_LEARNING_RATE]->dotDiv(*vecs[PARAMETER_GRADIENT_SQURESUM1],
                                        *vecs[PARAMETER_GRADIENT_SQURESUM],
162 163
                                        epsilon_,
                                        epsilon_);
Z
zhangjinchao01 已提交
164 165 166 167
  vecs[PARAMETER_LEARNING_RATE]->sqrt();

  // E(dx_t^2) = \rou * E(dx_{t-1}^2) + (1-\rou) * (-g*learn_rate)^2
  vecs[PARAMETER_GRADIENT_SQURESUM1]->decayAddSquareMul(
168 169 170
      *vecs[PARAMETER_GRADIENT],
      *vecs[PARAMETER_LEARNING_RATE],
      rou_,
Z
zhangjinchao01 已提交
171 172
      1.0f - rou_);

173 174 175 176 177 178
  vecs[PARAMETER_VALUE]->sgdUpdate(*vecs[PARAMETER_GRADIENT],
                                   *vecs[PARAMETER_MOMENTUM],
                                   *vecs[PARAMETER_LEARNING_RATE],
                                   learningRate_ * config.learning_rate(),
                                   config.momentum(),
                                   applyDecay_ ? config.decay_rate() : 0);
Z
zhangjinchao01 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
}

void RMSPropParameterOptimizer::update(const VectorPtr vecs[],
                                       const ParameterConfig& config,
                                       size_t sparseId) const {
  real accumulatedRou = rou_;

  bool firstTime = timer_ == 0;
  if (sparseId != -1LU) {
    CHECK_LT(sparseId, t0Vec_.size());
    accumulatedRou = std::pow(rou_, timer_ + 1 - t0Vec_[sparseId]);
    firstTime = t0Vec_[sparseId] == 0;
    t0Vec_[sparseId] = timer_ + 1;
  }

  // E(g_t^2) = \rou * E(g_{t-1}^2) + (1-\rou) * g^2
  // For the first time update, make the sum be the current square
  // so that the initial estimation of E(g_t^2) will not be too small.
  vecs[PARAMETER_GRADIENT_SQURESUM]->decayAddSquare(
198 199
      *vecs[PARAMETER_GRADIENT],
      accumulatedRou,
Z
zhangjinchao01 已提交
200 201 202
      firstTime ? 1.0f : 1.0f - rou_);

  // E(g_t) = \rou * E(g_{t-1}) + (1-\rou) * g
203 204
  vecs[PARAMETER_GRADIENT_SQURESUM1]->add(
      *vecs[PARAMETER_GRADIENT], accumulatedRou, 1.0f - rou_);
Z
zhangjinchao01 已提交
205 206 207 208 209 210 211 212 213 214

  // learn_rate = 1/sqrt( ( E(g_t^2) - (E(g_t))^2 + epsilon )
  // Basiclly if the sign of the gradient changes more often,
  // the learning rate will be decreased.
  vecs[PARAMETER_LEARNING_RATE]->assign(*vecs[PARAMETER_GRADIENT_SQURESUM]);
  vecs[PARAMETER_LEARNING_RATE]->addSquare(*vecs[PARAMETER_GRADIENT_SQURESUM1],
                                           -1.0f);
  vecs[PARAMETER_LEARNING_RATE]->add(optConfig_.ada_epsilon());
  vecs[PARAMETER_LEARNING_RATE]->invSqrt(*vecs[PARAMETER_LEARNING_RATE]);

215 216 217 218 219 220
  vecs[PARAMETER_VALUE]->sgdUpdate(*vecs[PARAMETER_GRADIENT],
                                   *vecs[PARAMETER_MOMENTUM],
                                   *vecs[PARAMETER_LEARNING_RATE],
                                   learningRate_ * config.learning_rate(),
                                   config.momentum(),
                                   applyDecay_ ? config.decay_rate() : 0);
Z
zhangjinchao01 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
}

void DecayedAdagradParameterOptimizer::update(const VectorPtr vecs[],
                                              const ParameterConfig& config,
                                              size_t sparseId) const {
  real accumulatedRou = rou_;

  bool firstTime = timer_ == 0;
  if (sparseId != -1LU) {
    CHECK_LT(sparseId, t0Vec_.size());
    accumulatedRou = std::pow(rou_, timer_ + 1 - t0Vec_[sparseId]);
    firstTime = t0Vec_[sparseId] == 0;
    t0Vec_[sparseId] = timer_ + 1;
  }

  // E(g_t^2) = \rou * E(g_{t-1}^2) + (1-\rou) * g^2
  // For the first time update, make the sum be the current square
  // so that the initial estimation of E(g_t^2) will not be too small.
  vecs[PARAMETER_GRADIENT_SQURESUM]->decayAddSquare(
240 241
      *vecs[PARAMETER_GRADIENT],
      accumulatedRou,
Z
zhangjinchao01 已提交
242 243 244 245 246 247 248 249 250
      firstTime ? 1.0f : 1.0f - rou_);

  // learn_rate = 1/sqrt( ( E(g_t^2) + epsilon )
  // Basiclly if the bigger the magnitude gradient is,
  // the smaller the learning rate will be.
  vecs[PARAMETER_LEARNING_RATE]->assign(optConfig_.ada_epsilon());
  vecs[PARAMETER_LEARNING_RATE]->add(*vecs[PARAMETER_GRADIENT_SQURESUM]);
  vecs[PARAMETER_LEARNING_RATE]->invSqrt(*vecs[PARAMETER_LEARNING_RATE]);

251 252 253 254 255 256
  vecs[PARAMETER_VALUE]->sgdUpdate(*vecs[PARAMETER_GRADIENT],
                                   *vecs[PARAMETER_MOMENTUM],
                                   *vecs[PARAMETER_LEARNING_RATE],
                                   learningRate_ * config.learning_rate(),
                                   config.momentum(),
                                   applyDecay_ ? config.decay_rate() : 0);
Z
zhangjinchao01 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
}

void AdamParameterOptimizer::update(const VectorPtr vecs[],
                                    const ParameterConfig& config,
                                    size_t sparseId) const {
  CHECK(sparseId == -1UL) << "Sparse update is not supported";
  Vector* m = vecs[PARAMETER_MOMENTUM].get();
  Vector* g = vecs[PARAMETER_GRADIENT].get();
  Vector* v = vecs[PARAMETER_SECOND_MOMENTUM].get();
  Vector* theta = vecs[PARAMETER_VALUE].get();

  // m_t = \beta_1 * m_{t-1} + (1-\beta_1)* g_t;
  m->add(*g, beta1_, 1 - beta1_);

  // v_t = \beta_2 * v_{t-1} + (1-\beta_2)* g_{t-1}^2
  g->square();
  v->add(*g, beta2_, 1 - beta2_);

  // tmp = m_t / ( \sqrt{v_t} + \epsilon )
  // \theta_t = \theta_{t-1} - \alpha * \sqrt(1-\beta_2^t) / (1-\beta_1^t) * tmp
  g->sqrt(*v);
  g->dotDiv(*m, *g, 0., epsilon_);
  real alpha = config.learning_rate() * learningRate_;
  alpha = alpha * std::sqrt(1 - std::pow(beta2_, step_)) /
          (1 - std::pow(beta1_, step_));
  theta->add(*theta, 1.0, *g, -alpha);
}

void AdamaxParameterOptimizer::update(const VectorPtr vecs[],
                                      const ParameterConfig& config,
                                      size_t sparseId) const {
  CHECK(sparseId == -1UL) << "Sparse update is not supported";
  Vector* m = vecs[PARAMETER_MOMENTUM].get();
  Vector* g = vecs[PARAMETER_GRADIENT].get();
  Vector* u = vecs[PARAMETER_WEIGHTED_INFINITY_NORM].get();
  Vector* theta = vecs[PARAMETER_VALUE].get();

  // m_t = \beta_1 * m_{t-1} + (1-\beta_1)* g_t;
  m->add(*g, beta1_, 1 - beta1_);

  // u_t = max(\beta_2*u_{t-1}, abs(g_t))
  u->mulScalar(beta2_);
  g->abs();
  u->max(*u, *g);

  // \theta_t = \theta_{t-1} - (\alpha/(1-\beta_1^t))*m_t/u_t
  g->dotDiv(*m, *u);
  real learningRate = config.learning_rate() * learningRate_;
  learningRate /= (1 - std::pow(beta1_, step_));
  theta->add(*theta, 1.0, *g, -learningRate);
}

void OptimizerWithGradientClipping::update(const VectorPtr vecs[],
                                           const ParameterConfig& config,
                                           size_t sparseId) const {
  real maxAbsGrad = vecs[PARAMETER_GRADIENT]->getAbsMax();
  if (maxAbsGrad > config.gradient_clipping_threshold()) {
    if (FLAGS_log_clipping) {
      real avgAbsGrad = vecs[PARAMETER_GRADIENT]->getAbsSum() /
                        vecs[PARAMETER_GRADIENT]->getSize();
      LOG(INFO) << "parameter=" << config.name() << " need clipping,"
                << " max grad=" << maxAbsGrad << " avg grad=" << avgAbsGrad;
    }
    vecs[PARAMETER_GRADIENT]->clip(-config.gradient_clipping_threshold(),
                                   config.gradient_clipping_threshold());
  }

  optimizer_->update(vecs, config, sparseId);
}

}  // namespace paddle