fluid_benchmark.py 13.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import cProfile
import time
import os

import numpy as np

import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.profiler as profiler
import paddle.fluid.transpiler.distribute_transpiler as distribute_transpiler

BENCHMARK_MODELS = [
    "machine_translation", "resnet", "vgg", "mnist", "stacked_dynamic_lstm"
]


def parse_args():
    parser = argparse.ArgumentParser('Fluid model benchmarks.')
    parser.add_argument(
        '--model',
        type=str,
        choices=BENCHMARK_MODELS,
        default='resnet',
        help='The model to run benchmark with.')
    parser.add_argument(
        '--batch_size', type=int, default=32, help='The minibatch size.')
    parser.add_argument(
        '--learning_rate',
        type=float,
        default=0.001,
        help='The minibatch size.')
    # TODO(wuyi): add "--use_fake_data" option back.
    parser.add_argument(
        '--skip_batch_num',
        type=int,
        default=5,
        help='The first num of minibatch num to skip, for better performance test'
    )
    parser.add_argument(
        '--iterations', type=int, default=80, help='The number of minibatches.')
    parser.add_argument(
        '--pass_num', type=int, default=100, help='The number of passes.')
    parser.add_argument(
        '--data_format',
        type=str,
        default='NCHW',
        choices=['NCHW', 'NHWC'],
        help='The data data_format, now only support NCHW.')
    parser.add_argument(
        '--device',
        type=str,
        default='GPU',
        choices=['CPU', 'GPU'],
        help='The device type.')
    parser.add_argument(
        '--gpus',
        type=int,
        default=1,
        help='If gpus > 1, will use ParallelExecutor to run, else use Executor.')
    parser.add_argument(
        '--data_set',
        type=str,
        default='flowers',
        choices=['cifar10', 'flowers'],
        help='Optional dataset for benchmark.')
    parser.add_argument(
        '--infer_only', action='store_true', help='If set, run forward only.')
    parser.add_argument(
        '--use_cprof', action='store_true', help='If set, use cProfile.')
    parser.add_argument(
        '--use_nvprof',
        action='store_true',
        help='If set, use nvprof for CUDA.')
    parser.add_argument(
        '--no_test',
        action='store_false',
        help='If set, test the testset during training.')
    parser.add_argument(
        '--memory_optimize',
        action='store_true',
        help='If set, optimize runtime memory before start.')
    parser.add_argument(
        '--update_method',
        type=str,
        default='local',
        choices=['local', 'pserver', 'nccl2'],
        help='Choose parameter update method, can be local, pserver, nccl2.')
    args = parser.parse_args()
    return args


def append_nccl2_prepare():
    if os.getenv("PADDLE_TRAINER_ID", None) != None:
        # append gen_nccl_id at the end of startup program
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        port = os.getenv("PADDLE_PSERVER_PORT")
        worker_ips = os.getenv("PADDLE_TRAINER_IPS")
        worker_endpoints = []
        for ip in worker_ips.split(","):
            worker_endpoints.append(':'.join([ip, port]))
        num_trainers = len(worker_endpoints)
        current_endpoint = os.getenv("PADDLE_CURRENT_IP") + ":" + port
        worker_endpoints.remove(current_endpoint)

        nccl_id_var = fluid.default_startup_program().global_block().create_var(
            name="NCCLID",
            persistable=True,
            type=fluid.core.VarDesc.VarType.RAW)
        fluid.default_startup_program().global_block().append_op(
            type="gen_nccl_id",
            inputs={},
            outputs={"NCCLID": nccl_id_var},
            attrs={
                "endpoint": current_endpoint,
                "endpoint_list": worker_endpoints,
                "trainer_id": trainer_id
            })
        return nccl_id_var, num_trainers, trainer_id
    else:
        raise Exception(
            "must set PADDLE_TRAINER_ID env variables for dist train.")


def dist_transpile():
    if "PADDLE_TRAINING_ROLE" not in os.environ:
        return None, None

    # the port of all pservers, needed by both trainer and pserver
    port = os.getenv("PADDLE_PSERVER_PORT", "6174")
    # comma separated ips of all pservers, needed by trainer and
    # pserver
    pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
    eplist = []
    for ip in pserver_ips.split(","):
        eplist.append(':'.join([ip, port]))
    pserver_endpoints = ",".join(eplist)
    # total number of workers/trainers in the job, needed by
    # trainer and pserver
    trainers = int(os.getenv("PADDLE_TRAINERS"))
    # the IP of the local machine, needed by pserver only
    current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
    # the unique trainer id, starting from 0, needed by trainer
    # only
    trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
    # the role, should be either PSERVER or TRAINER
    training_role = os.getenv("PADDLE_TRAINING_ROLE")

    t = distribute_transpiler.DistributeTranspiler()
    t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
    if training_role == "PSERVER":
        pserver_program = t.get_pserver_program(current_endpoint)
        pserver_startup_program = t.get_startup_program(current_endpoint,
                                                        pserver_program)
        return pserver_program, pserver_startup_program
    elif training_role == "TRAINER":
        train_program = t.get_trainer_program()
        return train_program, fluid.default_startup_program()
    else:
        raise ValueError(
            'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
        )


def test(exe, inference_program, test_reader, feeder, batch_acc):
    accuracy_evaluator = fluid.metrics.Accuracy()
    for batch_id, data in enumerate(test_reader()):
        acc = exe.run(inference_program,
                      feed=feeder.feed(data),
                      fetch_list=[batch_acc])
        accuracy_evaluator.update(value=np.array(acc), weight=len(data))

    return accuracy_evaluator.eval()


# TODO(wuyi): replace train, train_parallel, test functions with new trainer
# API once it is ready.
def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
          args, train_prog, startup_prog):
    if os.getenv("PADDLE_TRAINING_ROLE") == "PSERVER":
        place = core.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        exe.run(train_prog)
        return

    place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
    exe = fluid.Executor(place)
    exe.run(startup_prog)
    feed_var_list = [
        var for var in train_prog.global_block().vars.itervalues()
        if var.is_data
    ]
    feeder = fluid.DataFeeder(feed_var_list, place)

    iters, num_samples, start_time = 0, 0, time.time()
    for pass_id in range(args.pass_num):
        train_losses = []
        for batch_id, data in enumerate(train_reader()):
            if iters == args.skip_batch_num:
                start_time = time.time()
                num_samples = 0
            if iters == args.iterations:
                break
            loss = exe.run(train_prog,
                           feed=feeder.feed(data),
                           fetch_list=[avg_loss])
            iters += 1
            num_samples += len(data)
            train_losses.append(loss)
            print("Pass: %d, Iter: %d, Loss: %f\n" %
                  (pass_id, iters, np.mean(train_losses)))
        train_elapsed = time.time() - start_time
        examples_per_sec = num_samples / train_elapsed
        print('\nTotal examples: %d, total time: %.5f, %.5f examples/sec\n' %
              (num_samples, train_elapsed, examples_per_sec))
        print("Pass: %d, Loss: %f" % (pass_id, np.mean(train_losses)))
        # evaluation
        if not args.no_test and batch_acc != None:
            pass_test_acc = test(exe, infer_prog, test_reader, feeder,
                                 batch_acc)
            print(", Test Accuracy: %f" % pass_test_acc)
        print("\n")
        # TODO(wuyi): add warmup passes to get better perf data.
        exit(0)


# TODO(wuyi): replace train, train_parallel, test functions with new trainer
# API once it is ready.
def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
                   batch_acc, args, train_prog, startup_prog, nccl_id_var,
                   num_trainers, trainer_id):
    place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
    startup_exe = fluid.Executor(place)
    startup_exe.run(startup_prog)
    strategy = fluid.ExecutionStrategy()
    strategy.num_threads = 1
    strategy.allow_op_delay = False
    exe = fluid.ParallelExecutor(
        True,
        avg_loss.name,
        exec_strategy=strategy,
        num_trainers=num_trainers,
        trainer_id=trainer_id)
    feed_var_list = [
        var for var in train_prog.global_block().vars.itervalues()
        if var.is_data
    ]
    feeder = fluid.DataFeeder(feed_var_list, place)
    for pass_id in range(args.pass_num):
        num_samples = 0
        iters = 0
        start_time = time.time()
        for batch_id, data in enumerate(train_reader()):
            if iters == args.skip_batch_num:
                start_time = time.time()
                num_samples = 0
            if iters == args.iterations:
                break
            loss, = exe.run([avg_loss.name], feed=feeder.feed(data))
            if args.update_method == "pserver":
                exe.bcast_params()
            num_samples += len(data)
            iters += 1
            if batch_id % 1 == 0:
                print("Pass %d, batch %d, loss %s" %
                      (pass_id, batch_id, np.array(loss)))
        train_elapsed = time.time() - start_time
        examples_per_sec = num_samples / train_elapsed
        print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
              (num_samples, train_elapsed, examples_per_sec))
        if not args.no_test and batch_acc != None:
            test_acc = test(startup_exe, infer_prog, test_reader, feeder,
                            batch_acc)
            print("Pass: %d, Test Accuracy: %f\n" % (pass_id, test_acc))
        exit(0)


def print_arguments(args):
    vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
                                vars(args)['device'] == 'GPU')
    print('----------- resnet Configuration Arguments -----------')
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


def main():
    args = parse_args()
    print_arguments(args)
    nccl_id_var, num_trainers, trainer_id = None, 1, 0

    if args.use_cprof:
        pr = cProfile.Profile()
        pr.enable()
    model_def = __import__("models.%s" % args.model, fromlist=["models"])
    train_args = list(model_def.get_model(args))
    train_args.append(args)
    # Run optimizer.minimize(avg_loss)
    train_args[2].minimize(train_args[0])
    if args.memory_optimize:
        fluid.memory_optimize(fluid.default_main_program())

    if args.update_method == "pserver":
        train_prog, startup_prog = dist_transpile()
        if not train_prog:
            raise Exception(
                "Must configure correct environments to run dist train.")
        train_args.extend([train_prog, startup_prog])
        if args.gpus > 1 and os.getenv("PADDLE_TRAINING_ROLE") == "TRAINER":
            train_args.extend([nccl_id_var, num_trainers, trainer_id])
            train_parallel(*train_args)
        train(*train_args)
        exit(0)

    # for other update methods, use default programs
    train_args.append(fluid.default_main_program())
    train_args.append(fluid.default_startup_program())

    if args.update_method == "nccl2":
        nccl_id_var, num_trainers, trainer_id = append_nccl2_prepare()
    if args.gpus == 1:
        # NOTE: parallel executor use profiler interanlly
        if args.use_nvprof and args.device == 'GPU':
            with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof:
                train(*train_args)
        else:
            train(*train_args)
    else:
        if args.device == "CPU":
            raise Exception("Only support GPU perf with parallel exe")
        train_args.extend([nccl_id_var, num_trainers, trainer_id])
        train_parallel(*train_args)


if __name__ == "__main__":
    main()