MkldnnTester.cpp 11.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MkldnnTester.h"
#include "paddle/gserver/layers/MkldnnBase.h"
T
tensor-tang 已提交
17
#include "paddle/gserver/layers/MkldnnLayer.h"
T
tensor-tang 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

namespace paddle {

// init data layer and test layer of both dnn and reference
void MkldnnTester::reset(const TestConfig& dnn,
                         const TestConfig& ref,
                         size_t batchSize) {
  const bool trans = false;
  const bool useGpu = false;

  // clear
  configs_.clear();
  layerNames_.clear();
  dataLayers_.clear();
  datas_.clear();
  layerMaps_.clear();
  parameters_.clear();
  testLayers_.clear();

  // resize
  configs_.resize(NUM);
  layerNames_.resize(NUM);
  dataLayers_.resize(NUM);
  datas_.resize(NUM);
  layerMaps_.resize(NUM);
  parameters_.resize(NUM);
  testLayers_.resize(NUM);

  // reset configs and layer names
  configs_[DNN] = dnn;
  configs_[REF] = ref;
  layerNames_[DNN] = "mkldnn";     // the first is mkldnn layer
  layerNames_[REF] = "reference";  // second is reference layer

  // reset others
  for (size_t i = 0; i < NUM; ++i) {
    configs_[i].layerConfig.set_name(layerNames_[i]);
    initDataLayer(configs_[i],
                  &(dataLayers_[i]),
                  &(datas_[i]),
                  &(layerMaps_[i]),
                  layerNames_[i],
                  batchSize,
                  trans,
                  useGpu);
    initTestLayer(
        configs_[i], &(layerMaps_[i]), &(parameters_[i]), &(testLayers_[i]));
  }
  dnnLayer_ = testLayers_[DNN];
  refLayer_ = testLayers_[REF];
  EXPECT_EQ(dataLayers_[DNN].size(), dataLayers_[REF].size());
  EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());

  setInputImgSize();
}

void MkldnnTester::setInputImgSize() {
  for (size_t n = 0; n < dataLayers_.size(); ++n) {
    for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
      // TODO(TJ): fix me when concat and elewise ready
      dataLayers_[n][i]->getOutput().setFrameHeight(ih_);
      dataLayers_[n][i]->getOutput().setFrameWidth(iw_);
    }
  }
}

// init randome parameters of ref, and copy to mkldnn
void MkldnnTester::randomWgtDatas() {
  EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
  for (size_t i = 0; i < parameters_[REF].size(); ++i) {
    const VectorPtr& dnnValue = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
    const VectorPtr& refValue = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
    parameters_[REF][i]->randomize();
    dnnValue->copyFrom(*refValue);

    VLOG(lvl_) << "Random weight data " << parameters_[DNN][i]->getName();
    printVector(dnnValue);
  }
}

// random botdata of ref layer and copy same to mkldnn
void MkldnnTester::randomBotDatas() {
  CHECK_EQ(dataLayers_.size(), NUM);
  for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
    dataLayers_[REF][i]->getOutputValue()->randomizeUniform();
    dataLayers_[DNN][i]->getOutputValue()->copyFrom(
        *(dataLayers_[REF][i]->getOutputValue()));
    VLOG(lvl_) << "Input " << i << " data:";
    printMatrix(dataLayers_[REF][i]->getOutputValue());
  }
}

void MkldnnTester::randomTopDiffs() {
  refLayer_->getOutputGrad()->randomizeUniform();
  dnnLayer_->getOutputGrad()->copyFrom(*(refLayer_->getOutputGrad()));
  VLOG(lvl_) << "Random dom Backward Input, TopDiff: ";
  printMatrix(refLayer_->getOutputGrad());
}

void MkldnnTester::checkForward() {
  printTopDatas();
  double delta = compareMatrix(testLayers_[DNN]->getOutputValue(),
                               testLayers_[REF]->getOutputValue());
T
tensor-tang 已提交
121
  VLOG(DNN_ALL) << "Check Forward";
T
tensor-tang 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  EXPECT_LE(fabs(delta), eps_);
}

void MkldnnTester::checkBackwardData() {
  const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm";
  for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
    const MatrixPtr& dnnDiff = dataLayers_[DNN][i]->getOutputGrad();
    const MatrixPtr& refDiff = dataLayers_[REF][i]->getOutputGrad();
    VLOG(lvl_) << "Mkldnn Backward Output BotDiff " << i;
    printMatrix(dnnDiff);
    VLOG(lvl_) << "Reference Backward Output BotDiff " << i;
    printMatrix(refDiff);

    double delta = compareMatrix(dnnDiff, refDiff);
    EXPECT_LE(fabs(delta), eps_);
    if (isBN) {
      // the other two inputs in batch norm are for moving mean and var
      break;
    }
  }
}

void MkldnnTester::checkBackwardWgts() {
  CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
  vector<VectorPtr> dnnWgts;  // used to temply save mkldnn weights
  saveWgt(parameters_[DNN], dnnWgts);

T
tensor-tang 已提交
149 150 151 152
  const MkldnnLayerPtr dnnlayer =
      std::dynamic_pointer_cast<MkldnnLayer>(dnnLayer_);
  CHECK(dnnlayer);
  dnnlayer->cvtWgtToPaddle();
T
tensor-tang 已提交
153 154 155 156 157 158 159 160 161 162 163 164
  for (size_t i = 0; i < parameters_[DNN].size(); ++i) {
    const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
    const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
    VLOG(lvl_) << "Mkldnn Output weight " << parameters_[DNN][i]->getName();
    printVector(dnn);
    VLOG(lvl_) << "Reference Output weight " << parameters_[REF][i]->getName();
    printVector(ref);

    double delta = compareVector(dnn, ref);
    EXPECT_LE(fabs(delta), eps_);
  }

T
tensor-tang 已提交
165
  VLOG(DNN_ALL) << "Restore dnn weights before comapre";
T
tensor-tang 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  restoreWgt(dnnWgts, parameters_[DNN]);
}

void MkldnnTester::saveWgt(const vector<ParameterPtr>& from,
                           vector<VectorPtr>& to) {
  const bool useGpu = false;
  to.resize(from.size());
  for (size_t i = 0; i < to.size(); ++i) {
    const VectorPtr& wgt = from[i]->getBuf(PARAMETER_VALUE);
    to[i] = Vector::create(wgt->getSize(), useGpu);
    to[i]->copyFrom(*wgt);
  }
}

void MkldnnTester::restoreWgt(const vector<VectorPtr>& from,
                              vector<ParameterPtr>& to) {
  CHECK_EQ(from.size(), to.size());
  for (size_t i = 0; i < from.size(); ++i) {
    const VectorPtr& wgt = to[i]->getBuf(PARAMETER_VALUE);
    wgt->copyFrom(*from[i]);
  }
}

// clear parameters grad
void MkldnnTester::clearWgtDiffs() {
  for (size_t n = 0; n < parameters_.size(); ++n) {
    for (size_t i = 0; i < parameters_[n].size(); ++i) {
      const VectorPtr& grad = parameters_[n][i]->getBuf(PARAMETER_GRADIENT);
      if (grad) {
        grad->zeroMem();
      }
    }
  }
}

void MkldnnTester::clearBotDiffs() {
  // dnn and ref
  for (size_t n = 0; n < dataLayers_.size(); ++n) {
    // all inputs layers
    for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
      dataLayers_[n][i]->getOutputGrad()->zeroMem();
    }
  }
}

void MkldnnTester::clearBotDiffs(int n) {
  CHECK_LT(n, NUM);
  // all inputs layers
  for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
    dataLayers_[n][i]->getOutputGrad()->zeroMem();
  }
}

void MkldnnTester::clearTopDatas() {
  for (size_t i = 0; i < testLayers_.size(); ++i) {
    testLayers_[i]->getOutputValue()->zeroMem();
  }
}

void MkldnnTester::printTopDatas() {
  if (!log_) {
    return;
  }

  for (int n = 0; n < NUM; ++n) {
    VLOG(lvl_) << testLayers_[n]->getType() << " forward output TopData: ";
    printMatrix(testLayers_[n]->getOutputValue());
  }
}

void MkldnnTester::printMatrix(const MatrixPtr& m) {
  if (!log_) {
    return;
  }
T
tensor-tang 已提交
240 241 242 243

  std::ostringstream ostr;
  m->print(ostr);
  VLOG(lvl_) << std::endl << ostr.str();
T
tensor-tang 已提交
244 245 246 247 248 249 250
}

void MkldnnTester::printVector(const VectorPtr& v) {
  if (!log_) {
    return;
  }

T
tensor-tang 已提交
251 252 253
  std::ostringstream ostr;
  v->print(ostr, v->getSize());
  VLOG(lvl_) << std::endl << ostr.str();
T
tensor-tang 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
}

double MkldnnTester::getDelta(const real* d1,
                              const real* d2,
                              size_t len,
                              const float failRate,
                              const float thres) {
  double delta = 0, sum = 0;
  int failCnt = 0;
  const double eps = 1e-5;
  double maxOut = 0;
  for (size_t i = 0; i < len; ++i) {
    double ref = fabs(d2[i]);
    double diff = fabs(d1[i] - d2[i]);
    delta += diff;
    sum += ref;
    if (ref > eps && fabs(d1[i]) > eps && diff / ref > thres) {
      maxOut = std::max(maxOut, diff / ref);
      failCnt++;
    }
  }
  EXPECT_TRUE(std::isnormal(sum));
  EXPECT_FALSE(std::isinf(sum));
  EXPECT_FALSE(std::isnan(delta));
T
tensor-tang 已提交
278 279
  VLOG(DNN_ALL) << "reference avg data: " << sum / len
                << ", delta: " << delta / sum << ", failCnt:" << failCnt;
T
tensor-tang 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
  return (failCnt / (float)len) > failRate ? maxOut : delta / sum;
}

double MkldnnTester::compareMatrix(const MatrixPtr& m1, const MatrixPtr& m2) {
  CHECK_EQ(m1->getElementCnt(), m2->getElementCnt());
  return getDelta(m1->getData(), m2->getData(), m1->getElementCnt());
}

double MkldnnTester::compareVector(const VectorPtr& v1, const VectorPtr& v2) {
  CHECK_EQ(v1->getSize(), v2->getSize());
  return getDelta(v1->getData(), v2->getData(), v1->getSize());
}

void MkldnnTester::runOnce() {
  // test forward
  randomBotDatas();
  dnnLayer_->forward(PASS_TRAIN);
  refLayer_->forward(PASS_TRAIN);
  checkForward();

  // test backward
  randomTopDiffs();
  dnnLayer_->backward(nullptr);
  refLayer_->backward(nullptr);
  checkBackwardData();
  checkBackwardWgts();

  // clear buffers
  // ref code will addto the diff, dnn code will writeto it
  clearBotDiffs(REF);
  // below two should be coverd by test layers
  // clearTopDatas();
  // clearWgtDiffs();
}

void MkldnnTester::run(const TestConfig& dnn,
                       const TestConfig& ref,
                       size_t batchSize,
                       size_t inputImgH,
                       size_t inputImgW,
                       size_t iter,
                       float epsilon,
                       bool log,
                       int level) {
  VLOG(DNN_TESTS) << "Test MKLDNN functionality: " << dnn.layerConfig.type()
                  << " vs " << ref.layerConfig.type();
  ih_ = inputImgH;
  iw_ = inputImgW;
  iter_ = iter;
  eps_ = epsilon;
  log_ = log;
  lvl_ = level;

T
tensor-tang 已提交
333 334
  // Firstly test FLAGS_use_mkldnn_wgt = false
  FLAGS_use_mkldnn_wgt = false;
T
tensor-tang 已提交
335
  // reset and run once
T
tensor-tang 已提交
336
  reset(dnn, ref, batchSize);
T
tensor-tang 已提交
337 338 339
  randomWgtDatas();
  clearWgtDiffs();
  clearBotDiffs();
T
tensor-tang 已提交
340 341 342 343
  for (size_t i = 0; i < iter_; ++i) {
    VLOG(DNN_TESTS) << "Check Iteration " << i;
    runOnce();
  }
T
tensor-tang 已提交
344

T
tensor-tang 已提交
345 346 347 348 349 350 351 352
  // Then test FLAGS_use_mkldnn_wgt = true
  FLAGS_use_mkldnn_wgt = true;
  // after run once the mkldnn weight has been stored in dnnlayer
  // then save the weigths and restart again
  vector<VectorPtr> dnnWgts, refWgts;
  CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
  saveWgt(parameters_[DNN], dnnWgts);
  saveWgt(parameters_[REF], refWgts);
T
tensor-tang 已提交
353

T
tensor-tang 已提交
354 355
  // restart again with flag true
  reset(dnn, ref, batchSize);
T
tensor-tang 已提交
356

T
tensor-tang 已提交
357 358 359 360 361
  // restore wgt
  restoreWgt(dnnWgts, parameters_[DNN]);
  restoreWgt(refWgts, parameters_[REF]);
  clearWgtDiffs();
  clearBotDiffs();
T
tensor-tang 已提交
362

T
tensor-tang 已提交
363
  for (size_t i = 0; i < iter_; ++i) {
T
tensor-tang 已提交
364 365 366 367 368 369
    VLOG(DNN_TESTS) << "Check Iteration " << i;
    runOnce();
  }
}

}  //  namespace paddle