hybrid_parallel_sharding_model.py 10.9 KB
Newer Older
J
JZ-LIANG 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import paddle
import numpy as np
import random
import paddle.distributed as dist
import paddle.fluid as fluid
import paddle.distributed.fleet as fleet
from paddle.io import DataLoader, Dataset
from paddle.distributed.fleet.meta_optimizers.dygraph_optimizer.dygraph_sharding_optimizer import DygraphShardingOptimizer
import unittest

vocab_size = 20
hidden_size = 10
inner_size = 8
output_size = 10
seq_length = 2
batch_size = 4
STEPS = 10


def parallel_matmul(lm_output, logit_weights, parallel_output):
    hcg = fleet.get_hybrid_communicate_group()
    model_parallel_group = hcg.get_model_parallel_group()
    world_size = hcg.get_model_parallel_world_size()
    rank = hcg.get_model_parallel_rank()

    if world_size > 1:
        input_parallel = paddle.distributed.collective._c_identity(
            lm_output, group=model_parallel_group)

        logits = paddle.matmul(input_parallel, logit_weights, transpose_y=True)

        if parallel_output:
            return logits

        return paddle.distributed.collective._c_concat(
            logits, group=model_parallel_group)
    else:
        logits = paddle.matmul(lm_output, logit_weights, transpose_y=True)
        return logits


class SimpleMPNet(fluid.dygraph.Layer):
    def __init__(self, vocab_size, hidden_size, inner_size, output_size, np_fc1,
                 np_fc2, mp_id):
        super(SimpleMPNet, self).__init__()

        if mp_id == 0:
            init_fc1_data = np_fc1[:, :(inner_size // 2)]
            init_fc2_data = np_fc2[:(inner_size // 2), :]
        else:
            init_fc1_data = np_fc1[:, (inner_size // 2):]
            init_fc2_data = np_fc2[(inner_size // 2):, :]

        self.linear1 = fleet.meta_parallel.ColumnParallelLinear(
            hidden_size,
            inner_size,
            weight_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Assign(init_fc1_data)),
            gather_output=False,
            has_bias=True)

        self.linear2 = fleet.meta_parallel.RowParallelLinear(
            inner_size,
            hidden_size,
            weight_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Assign(init_fc2_data)),
            input_is_parallel=True,
            has_bias=True)

        self.linear3 = paddle.nn.Linear(
            hidden_size,
            output_size,
            weight_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Constant(0.0)),
            bias_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Constant(0.0)))

        self.embedding = fleet.meta_parallel.VocabParallelEmbedding(
            vocab_size,
            hidden_size,
            weight_attr=paddle.nn.initializer.Constant(value=0.5))

    def forward(self, x):
        x = self.embedding(x)
        x = self.linear1(x)
        x = self.linear2(x)
        x = self.linear3(x)
        x = parallel_matmul(x, self.embedding.weight, False)
        return x


class SimpleDPNet(fluid.dygraph.Layer):
    def __init__(self, vocab_size, hidden_size, inner_size, output_size, np_fc1,
                 np_fc2):

        super(SimpleDPNet, self).__init__()
        self.linear1 = paddle.nn.Linear(
            hidden_size,
            inner_size,
            weight_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Assign(np_fc1)),
            bias_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Constant(0.0)))

        self.linear2 = paddle.nn.Linear(
            inner_size,
            hidden_size,
            weight_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Assign(np_fc2)),
            bias_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Constant(0.0)))

        self.linear3 = paddle.nn.Linear(
            hidden_size,
            output_size,
            weight_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Constant(0.0)),
            bias_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Constant(0.0)))

        self.embedding = paddle.nn.Embedding(
            vocab_size,
            hidden_size,
            weight_attr=paddle.nn.initializer.Constant(value=0.5))

    def forward(self, x):
        x = self.embedding(x)
        x = self.linear1(x)
        x = self.linear2(x)
        x = self.linear3(x)
        x = paddle.matmul(x, self.embedding.weight, transpose_y=True)
        return x


class TestDistMPTraning(unittest.TestCase):
    def setUp(self):
        random.seed(2021)
        np.random.seed(2021)
        paddle.seed(2021)

        self.strategy = fleet.DistributedStrategy()
        self.strategy.hybrid_configs = {
            "sharding_degree": 2,
            "dp_degree": 1,
            "mp_degree": 1,
            "pp_degree": 1,
        }
        fleet.init(is_collective=True, strategy=self.strategy)
        self.data = [
            np.random.randint(0, vocab_size, (
                batch_size,
                seq_length, )) for _ in range(STEPS)
        ]

    def train_batch(self, batch, model, optimizer):

        output = model(batch)
        loss = output.mean()
        loss.backward()  # do backward
        optimizer.step()  # update parameters
        optimizer.clear_grad()
        return loss

    def build_optimizer(self,
                        model,
                        strategy=None,
                        is_sharding=True,
                        Optimizer="adam"):
186
        clip = paddle.nn.ClipGradByGlobalNorm(0.5)
J
JZ-LIANG 已提交
187 188 189 190 191 192
        if Optimizer == "adam":
            if is_sharding:
                optimizer = DygraphShardingOptimizer(
                    hcg=fleet.get_hybrid_communicate_group(),
                    user_defined_strategy=strategy,
                    params=model.parameters(),
193
                    inner_optimizer_class=paddle.optimizer.AdamW,
J
JZ-LIANG 已提交
194
                    learning_rate=0.001,
195 196
                    weight_decay=0.00001,
                    grad_clip=clip)
J
JZ-LIANG 已提交
197
            else:
198
                optimizer = paddle.optimizer.AdamW(
J
JZ-LIANG 已提交
199 200
                    parameters=model.parameters(),
                    learning_rate=0.001,
201 202
                    weight_decay=0.00001,
                    grad_clip=clip)
J
JZ-LIANG 已提交
203 204 205 206 207 208 209
        else:
            if is_sharding:
                optimizer = DygraphShardingOptimizer(
                    hcg=fleet.get_hybrid_communicate_group(),
                    user_defined_strategy=strategy,
                    params=model.parameters(),
                    inner_optimizer_class=paddle.optimizer.Momentum,
210 211
                    learning_rate=0.001,
                    grad_clip=clip)
J
JZ-LIANG 已提交
212 213
            else:
                optimizer = paddle.optimizer.Momentum(
214 215 216
                    learning_rate=0.001,
                    parameters=model.parameters(),
                    grad_clip=clip)
J
JZ-LIANG 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
        return optimizer

    def build_model_optimizer(self, Optimizer="adam"):
        hcg = fleet.get_hybrid_communicate_group()
        word_size = hcg.get_model_parallel_world_size()
        sharding_id = hcg.get_sharding_parallel_rank()
        dp_id = hcg.get_data_parallel_rank()
        rank_id = dist.get_rank()

        np_fc1 = np.random.random_sample((hidden_size, inner_size))
        np_fc2 = np.random.random_sample((inner_size, hidden_size))

        model_a = SimpleDPNet(vocab_size, hidden_size, inner_size, output_size,
                              np_fc1, np_fc2)
        optimizer_a = self.build_optimizer(
            model_a,
            strategy=self.strategy,
            is_sharding=True,
            Optimizer=Optimizer)
        model_a = fleet.distributed_model(model_a)
        optimizer_a = fleet.distributed_optimizer(optimizer_a)

        model_b = SimpleDPNet(vocab_size, hidden_size, inner_size, output_size,
                              np_fc1, np_fc2)
        optimizer_b = self.build_optimizer(
            model_b,
            strategy=self.strategy,
            is_sharding=False,
            Optimizer=Optimizer)

        return model_a, optimizer_a, model_b, optimizer_b

    def sharding_model(self, Optimizer, sharded_accumulators):
        model_a, optimizer_a, model_b, optimizer_b = self.build_model_optimizer(
            Optimizer=Optimizer)

        self.assertTrue(
            isinstance(optimizer_a._inner_opt, DygraphShardingOptimizer))

        for idx in range(STEPS):

            if idx == 2 and paddle.distributed.get_rank() == 0:
                self.assertTrue(
                    set(optimizer_a._inner_opt._inner_optimizer.state_dict()
                        .keys()) == sharded_accumulators)

            if paddle.distributed.get_rank() == 0:
                batch_sharding = paddle.to_tensor(self.data[idx][:2])
            else:
                batch_sharding = paddle.to_tensor(self.data[idx][2:])

            batch_single = paddle.to_tensor(self.data[idx])
            loss_a = self.train_batch(batch_sharding, model_a, optimizer_a)
            loss_b = self.train_batch(batch_single, model_b, optimizer_b)

            for j in range(len(model_a.parameters())):
                np.testing.assert_allclose(
                    model_a.parameters()[j].numpy(),
                    model_b.parameters()[j].numpy(),
                    rtol=1e-6)

    def test_sharding_adam(self):
        sharded_accumulators = set([
            'linear_0.w_0_moment1_0', 'linear_1.b_0_moment1_0',
            'linear_2.b_0_moment1_0', 'embedding_0.w_0_moment1_0',
            'linear_0.w_0_moment2_0', 'linear_1.b_0_moment2_0',
            'linear_2.b_0_moment2_0', 'embedding_0.w_0_moment2_0',
            'linear_0.w_0_beta1_pow_acc_0', 'linear_1.b_0_beta1_pow_acc_0',
            'linear_2.b_0_beta1_pow_acc_0', 'embedding_0.w_0_beta1_pow_acc_0',
            'linear_0.w_0_beta2_pow_acc_0', 'linear_1.b_0_beta2_pow_acc_0',
            'linear_2.b_0_beta2_pow_acc_0', 'embedding_0.w_0_beta2_pow_acc_0'
        ])
        self.sharding_model(
            Optimizer="adam", sharded_accumulators=sharded_accumulators)

    def test_sharding_momentum(self):
        sharded_accumulators = set([
            'linear_6.w_0_velocity_0', 'linear_7.b_0_velocity_0',
            'linear_8.b_0_velocity_0', 'embedding_2.w_0_velocity_0'
        ])
        self.sharding_model(
            Optimizer="Momentum", sharded_accumulators=sharded_accumulators)


if __name__ == "__main__":
    unittest.main()