adagrad_op.h 4.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
C
chengduo 已提交
16

Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
19 20 21 22

namespace paddle {
namespace operators {

Q
QI JUN 已提交
23
template <typename DeviceContext, typename T>
Q
QI JUN 已提交
24
struct SparseAdagradFunctor {
C
chengduo 已提交
25 26 27 28
  void operator()(const DeviceContext &context,
                  const framework::SelectedRows &grad,
                  const framework::Tensor &learning_rate, T epsilon,
                  framework::Tensor *moment, framework::Tensor *param);
Q
QI JUN 已提交
29 30
};

S
sneaxiy 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44
template <typename DeviceContext, typename T>
framework::SelectedRows SquareSelectedRows(
    const DeviceContext &context, const framework::SelectedRows &input) {
  framework::SelectedRows out;
  out.set_rows(input.rows());
  out.set_height(input.height());
  out.mutable_value()->mutable_data<T>(input.value().dims(),
                                       context.GetPlace());
  auto e_out = framework::EigenVector<T>::Flatten(*(out.mutable_value()));
  auto e_in = framework::EigenVector<T>::Flatten(input.value());
  e_out.device(*context.eigen_device()) = e_in.square();
  return out;
}

Q
QI JUN 已提交
45
template <typename DeviceContext, typename T>
46 47
class AdagradOpKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
48 49
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *param_var = ctx.InputVar("Param");
50 51 52 53 54 55
    PADDLE_ENFORCE_EQ(param_var->IsType<framework::LoDTensor>(), true,
                      platform::errors::InvalidArgument(
                          "The Var(%s)'s type should be LoDTensor, "
                          "but the received is %s",
                          ctx.InputNames("Param").front(),
                          framework::ToTypeName(param_var->Type())));
C
chengduo 已提交
56 57 58

    auto *param_out_tensor = ctx.Output<framework::Tensor>("ParamOut");
    auto *moment_out_tensor = ctx.Output<framework::Tensor>("MomentOut");
59

K
Kexin Zhao 已提交
60 61
    param_out_tensor->mutable_data<T>(ctx.GetPlace());
    moment_out_tensor->mutable_data<T>(ctx.GetPlace());
62

Q
QI JUN 已提交
63 64
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));

C
chengduo 已提交
65
    auto *grad_var = ctx.InputVar("Grad");
Q
QI JUN 已提交
66 67 68 69 70 71 72
    if (grad_var->IsType<framework::LoDTensor>()) {
      auto param = framework::EigenVector<T>::Flatten(
          *ctx.Input<framework::Tensor>("Param"));
      auto grad = framework::EigenVector<T>::Flatten(
          *ctx.Input<framework::Tensor>("Grad"));
      auto moment = framework::EigenVector<T>::Flatten(
          *ctx.Input<framework::Tensor>("Moment"));
C
chengduo 已提交
73
      auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");
Q
QI JUN 已提交
74 75 76

      auto param_out = framework::EigenVector<T>::Flatten(*param_out_tensor);
      auto moment_out = framework::EigenVector<T>::Flatten(*moment_out_tensor);
C
chengduo 已提交
77
      auto *place = ctx.template device_context<DeviceContext>().eigen_device();
Q
QI JUN 已提交
78

Q
QI JUN 已提交
79
      moment_out.device(*place) = moment + grad * grad;
Q
QI JUN 已提交
80
      Eigen::DSizes<int, 1> m_dsize(moment_out_tensor->numel());
P
peterzhang2029 已提交
81
      if (platform::is_cpu_place(ctx.GetPlace())) {
C
chengduo 已提交
82
        auto *lr = learning_rate->data<T>();
P
peterzhang2029 已提交
83 84 85 86 87 88 89 90
        param_out.device(*place) =
            param - lr[0] * grad / (moment_out.sqrt() + epsilon);
      } else {
        auto lr = framework::EigenVector<T>::Flatten(*learning_rate);
        param_out.device(*place) =
            param -
            lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon);
      }
Q
QI JUN 已提交
91
    } else if (grad_var->IsType<framework::SelectedRows>()) {
C
chengduo 已提交
92
      auto *param_tensor = ctx.Input<framework::Tensor>("Param");
93 94 95
      PADDLE_ENFORCE_EQ(param_tensor, param_out_tensor,
                        platform::errors::InvalidArgument(
                            "the input tensor not euqal with output tensor"));
Q
QI JUN 已提交
96

C
chengduo 已提交
97
      auto *moment_tensor = ctx.Input<framework::Tensor>("Moment");
98 99 100
      PADDLE_ENFORCE_EQ(moment_tensor, moment_out_tensor,
                        platform::errors::InvalidArgument(
                            "the input moment not eual with output moment"));
Q
QI JUN 已提交
101

Q
QI JUN 已提交
102 103 104
      SparseAdagradFunctor<DeviceContext, T> functor;
      functor(ctx.template device_context<DeviceContext>(),
              *ctx.Input<framework::SelectedRows>("Grad"),
Q
QI JUN 已提交
105 106 107
              *ctx.Input<framework::Tensor>("LearningRate"), epsilon,
              moment_out_tensor, param_out_tensor);
    } else {
108 109
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported Variable Type of Grad"));
Q
QI JUN 已提交
110
    }
111 112 113 114 115
  }
};

}  // namespace operators
}  // namespace paddle