matmul_op.h 7.8 KB
Newer Older
M
Markus Kliegl 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   You may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/framework/op_registry.h"
18
#include "paddle/operators/math/math_function.h"
M
Markus Kliegl 已提交
19 20 21 22 23 24 25 26 27 28 29
#include "paddle/operators/math/matmul.h"

namespace paddle {
namespace operators {
namespace matmul_detail {

using Tensor = framework::Tensor;
using DDim = framework::DDim;
using framework::make_ddim;
using framework::vectorize;

Q
QI JUN 已提交
30
template <typename DeviceContext, typename T>
M
Markus Kliegl 已提交
31 32 33 34 35 36 37 38 39 40
class MatMulKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor& x = *context.Input<Tensor>("X");
    const Tensor& y = *context.Input<Tensor>("Y");
    Tensor* out = context.Output<Tensor>("Out");
    out->mutable_data<T>(context.GetPlace());
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

Q
QI JUN 已提交
41 42 43
    math::MatMulFunctor<DeviceContext, T>()(
        context.template device_context<DeviceContext>(), x, transpose_x, y,
        transpose_y, T(1), out, T(0));
M
Markus Kliegl 已提交
44 45 46 47 48 49
  }
};

template <typename T>
inline Tensor Reshape(const Tensor& input, const DDim& dims) {
  Tensor output;
50
  output.ShareDataWith(input);
M
Markus Kliegl 已提交
51 52 53 54 55 56 57 58 59
  output.Resize(dims);
  return output;
}

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
template <typename T>
Tensor CombineBatchAndM(const Tensor& input) {
  Tensor output;
60
  output.ShareDataWith(input);
M
Markus Kliegl 已提交
61 62 63 64 65 66 67 68 69 70 71
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    std::vector<int64_t> out_dims = {in_dims[0] * in_dims[1], in_dims[2]};
    output.Resize(make_ddim(out_dims));
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
Q
QI JUN 已提交
72 73
template <typename DeviceContext, typename T>
Tensor CombineBatchAndN(const DeviceContext& context, const Tensor& input) {
M
Markus Kliegl 已提交
74 75 76
  Tensor output;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
77
    output.Resize({in_dims[1], in_dims[0], in_dims[2]});
M
Markus Kliegl 已提交
78
    output.mutable_data<T>(context.GetPlace());
79
    std::vector<int> axis = {1, 0, 2};
Q
QI JUN 已提交
80 81
    math::Transpose<DeviceContext, T, 3> trans;
    trans(context, input, &output, axis);
M
Markus Kliegl 已提交
82
    std::vector<int64_t> out_dims = {in_dims[1], in_dims[0] * in_dims[2]};
83
    output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
M
Markus Kliegl 已提交
84
  } else {
85
    output.ShareDataWith(input);
M
Markus Kliegl 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  }
  return output;
}

// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False    | True     | False    | True
// transpose_Y | False    | False    | True     | True
// -----------+----------+----------+----------+-----------
//        dX = | dOut Y^T | Y dOut^T | dOut Y   | Y^T dOut^T
//        dY = | X^T dOut | X dOut   | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
//   dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
Q
QI JUN 已提交
115
template <typename DeviceContext, typename T>
M
Markus Kliegl 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
class MatMulGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor& x = *context.Input<Tensor>("X");
    const Tensor& y = *context.Input<Tensor>("Y");
    const Tensor& dout = *context.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* dx = context.Output<Tensor>(framework::GradVarName("X"));
    Tensor* dy = context.Output<Tensor>(framework::GradVarName("Y"));
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    std::vector<int64_t> x_dims = vectorize(x.dims());
    std::vector<int64_t> y_dims = vectorize(y.dims());

    // If X is a vector, reshape it to a matrix.
    if (x_dims.size() == 1) {
      x_dims.insert(x_dims.begin(), 1);
    }

    // If Y is a vector, reshape it to a matrix.
    if (y_dims.size() == 1) {
      y_dims.push_back(1);
    }

    // Fix the dOut dimensions.
    int M = 0, N = 0, batchCountX = 0, batchCountY = 0;

    switch (x_dims.size()) {
      case 2:
        M = transpose_x ? x_dims[1] : x_dims[0];
        break;
      case 3:
        batchCountX = x_dims[0];
        M = transpose_x ? x_dims[2] : x_dims[1];
        break;
      default:
        assert(false);
    }

    switch (y_dims.size()) {
      case 2:
        N = transpose_y ? y_dims[0] : y_dims[1];
        break;
      case 3:
        batchCountY = y_dims[0];
        N = transpose_y ? y_dims[1] : y_dims[2];
        break;
      default:
        assert(false);
    }
    if (batchCountX && batchCountY) {
      PADDLE_ENFORCE_EQ(
          batchCountX, batchCountY,
          "When Input(X) and Input(Y) are both three dimensional, they "
          "must have the same batch dimension.");
    }
    int batchCount = std::max(batchCountX, batchCountY);
    std::vector<int64_t> dout_dims = {M, N};
    if (batchCount) {
      dout_dims.insert(dout_dims.begin(), batchCount);
    }
    Tensor X = Reshape<T>(x, make_ddim(x_dims));
    Tensor Y = Reshape<T>(y, make_ddim(y_dims));
    Tensor dOut = Reshape<T>(dout, make_ddim(dout_dims));

Q
QI JUN 已提交
181
    auto& dev_ctx = context.template device_context<DeviceContext>();
M
Markus Kliegl 已提交
182 183 184 185
    if (dx) {
      dx->mutable_data<T>(context.GetPlace());
      const Tensor& dOut_for_dX =
          (x_dims.size() == 2 && y_dims.size() == 3)
Q
QI JUN 已提交
186
              ? CombineBatchAndN<DeviceContext, T>(dev_ctx, dOut)
M
Markus Kliegl 已提交
187 188 189
              : dOut;
      if (x_dims.size() == 2 && y_dims.size() == 3) {
        Y = transpose_y ? CombineBatchAndM<T>(Y)
Q
QI JUN 已提交
190
                        : CombineBatchAndN<DeviceContext, T>(dev_ctx, Y);
M
Markus Kliegl 已提交
191 192
      }
      if (transpose_x) {
Q
QI JUN 已提交
193 194
        math::MatMulFunctor<DeviceContext, T>()(
            dev_ctx, Y, transpose_y, dOut_for_dX, transpose_x, T(1), dx, T(0));
M
Markus Kliegl 已提交
195
      } else {
Q
QI JUN 已提交
196 197
        math::MatMulFunctor<DeviceContext, T>()(
            dev_ctx, dOut_for_dX, transpose_x, Y, !transpose_y, T(1), dx, T(0));
M
Markus Kliegl 已提交
198 199 200 201 202 203 204 205 206
      }
    }

    if (dy) {
      dy->mutable_data<T>(context.GetPlace());
      const Tensor& dOut_for_dY = (y_dims.size() == 2 && x_dims.size() == 3)
                                      ? CombineBatchAndM<T>(dOut)
                                      : dOut;
      if (y_dims.size() == 2 && x_dims.size() == 3) {
Q
QI JUN 已提交
207
        X = transpose_x ? CombineBatchAndN<DeviceContext, T>(dev_ctx, X)
M
Markus Kliegl 已提交
208 209 210 211
                        : CombineBatchAndM<T>(X);
        dOut = CombineBatchAndM<T>(dOut);
      }
      if (transpose_y) {
Q
QI JUN 已提交
212 213
        math::MatMulFunctor<DeviceContext, T>()(
            dev_ctx, dOut_for_dY, transpose_y, X, transpose_x, T(1), dy, T(0));
M
Markus Kliegl 已提交
214
      } else {
Q
QI JUN 已提交
215 216
        math::MatMulFunctor<DeviceContext, T>()(
            dev_ctx, X, !transpose_x, dOut_for_dY, transpose_y, T(1), dy, T(0));
M
Markus Kliegl 已提交
217 218 219 220 221 222 223 224 225 226 227
      }
    }
  }
};
}  // namespace matmul_detail

using matmul_detail::MatMulKernel;
using matmul_detail::MatMulGradKernel;

}  // namespace operators
}  // namespace paddle