data_transform.cc 4.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/data_transform.h"
16

Y
Yi Wang 已提交
17 18 19
#include "paddle/fluid/framework/data_device_transform.h"
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/data_type_transform.h"
Q
Qiao Longfei 已提交
20

21 22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

Q
Qiao Longfei 已提交
25 26 27
namespace paddle {
namespace framework {

28 29 30 31 32
static void PassTensorData(Tensor* from, Tensor* to) {
  to->ShareDataWith(*from);
  *from = Tensor();
}

33 34
void DataTransform(const OpKernelType& expected_kernel_type,
                   const OpKernelType& kernel_type_for_var,
35 36 37 38 39
                   const Tensor& input_tensor, Tensor* output_tensor) {
  bool transformed = false;
  Tensor in;
  in.ShareDataWith(input_tensor);
  Tensor out;
M
mozga-intel 已提交
40 41
  DataLayout lin = kernel_type_for_var.data_layout_;
  DataLayout lout = expected_kernel_type.data_layout_;
42 43

  // do layout transform
M
mozga-intel 已提交
44 45 46 47 48 49 50 51 52 53
  if (NeedTransformLayout(lout, lin)) {
    if (lin == DataLayout::kMKLDNN || lout == DataLayout::kMKLDNN) {
      PADDLE_ENFORCE(
          !(lin == DataLayout::kMKLDNN && lout == DataLayout::kMKLDNN),
          "No layout transform needed between two MKLDNN OPKernels");

      if (lin != DataLayout::kMKLDNN && lout == DataLayout::kMKLDNN) {
#ifdef PADDLE_WITH_MKLDNN
        // Case1 - transform from Non-MKLDNN OPKernel to MKLDNN OPKernel
        // Just set layout/format. No real transform occur
54

55 56
        auto out_format = platform::MKLDNNFormatForSize(in.dims().size(),
                                                        ToMKLDNNFormat(lin));
57

M
mozga-intel 已提交
58 59
        out.ShareDataWith(input_tensor);
        out.set_layout(DataLayout::kMKLDNN);
60
        out.set_format(out_format);
M
mozga-intel 已提交
61 62 63 64 65 66 67 68 69 70 71
#endif
      } else {
        // Case2 - transfrom from MKLDNN OPKernel to Non-MKLDNN OPKernel
        // Do transform via MKLDNN lib
        TransDataLayoutFromMKLDNN(kernel_type_for_var, expected_kernel_type, in,
                                  &out);
      }
    } else {
      // Case3 - transfrom between Non-MKLDNN OPKernels
      TransDataLayout(kernel_type_for_var, expected_kernel_type, in, &out);
    }
72 73 74 75
    transformed = true;
    PassTensorData(&out, &in);
  }

76
  // do data type transform
Q
Qiao Longfei 已提交
77 78 79 80 81 82
  if (expected_kernel_type.data_type_ != kernel_type_for_var.data_type_) {
    TransDataType(kernel_type_for_var, expected_kernel_type, in, &out);
    transformed = true;
    PassTensorData(&out, &in);
  }

83
  // do device transform
84 85
  if (!platform::is_same_place(kernel_type_for_var.place_,
                               expected_kernel_type.place_)) {
Q
Qiao Longfei 已提交
86
    TransDataDevice(in, expected_kernel_type.place_, &out);
87 88
    transformed = true;
    PassTensorData(&out, &in);
89
  }
90

Q
Qiao Longfei 已提交
91
  PADDLE_ENFORCE(transformed, "No transform is applied, please check!");
92 93
  // get output data
  output_tensor->ShareDataWith(in);
94 95 96
}

void CopyVariableWithTensor(const Variable& in_var, const Tensor& tensor,
97
                            Variable* out_var) {
98 99
  if (in_var.IsType<LoDTensor>()) {
    auto& in_lod_tensor = in_var.Get<LoDTensor>();
100
    auto* tran_lod_tensor = out_var->GetMutable<LoDTensor>();
101 102 103 104 105
    tran_lod_tensor->set_lod(in_lod_tensor.lod());
    tran_lod_tensor->set_layout(in_lod_tensor.layout());
    tran_lod_tensor->ShareDataWith(tensor);
  } else if (in_var.IsType<SelectedRows>()) {
    auto& in_selected_rows = in_var.Get<SelectedRows>();
106
    auto* trans_selected_rows = out_var->GetMutable<SelectedRows>();
107 108 109 110 111 112 113 114
    trans_selected_rows->set_height(in_selected_rows.height());
    trans_selected_rows->set_rows(in_selected_rows.rows());
    trans_selected_rows->mutable_value()->ShareDataWith(tensor);
  } else {
    PADDLE_THROW("unknown var type");
  }
}

Q
Qiao Longfei 已提交
115 116
}  // namespace framework
}  // namespace paddle