imperative.cc 133.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
22

23
#include <algorithm>
24
#include <memory>
25
#include <set>
J
Jiabin Yang 已提交
26
#include <string>
27
#include <unordered_map>
28
#include <unordered_set>
29
#include <utility>
J
Jiabin Yang 已提交
30
#include <vector>
31

J
Jiabin Yang 已提交
32
#include "paddle/fluid/eager/api/all.h"
33
#include "paddle/fluid/framework/convert_utils.h"
34
#include "paddle/fluid/framework/scope_guard.h"
35
#include "paddle/fluid/imperative/all_reduce.h"
36
#include "paddle/fluid/imperative/amp_auto_cast.h"
37
#include "paddle/fluid/imperative/basic_engine.h"
38
#include "paddle/fluid/imperative/bkcl_context.h"
39
#include "paddle/fluid/imperative/cncl_context.h"
40
#include "paddle/fluid/imperative/data_loader.h"
41
#include "paddle/fluid/imperative/gloo_context.h"
42
#include "paddle/fluid/imperative/hccl_context.h"
K
kuizhiqing 已提交
43
#include "paddle/fluid/imperative/heter_ccl_context.h"
44
#include "paddle/fluid/imperative/hooks.h"
45
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
46
#include "paddle/fluid/imperative/nccl_context.h"
47
#include "paddle/fluid/imperative/partial_grad_engine.h"
48
#include "paddle/fluid/imperative/profiler.h"
49
#include "paddle/fluid/imperative/py_layer_fwd.h"
50
#include "paddle/fluid/imperative/reducer.h"
51
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
52
#include "paddle/fluid/imperative/type_defs.h"
53
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
54
#include "paddle/fluid/operators/utils.h"
L
Leo Chen 已提交
55
#include "paddle/fluid/pybind/cuda_streams_py.h"
56
#include "paddle/fluid/pybind/eager_utils.h"
57
#include "paddle/fluid/pybind/op_function.h"
58
#include "paddle/fluid/pybind/pybind_variant_caster.h"
J
Jiabin Yang 已提交
59
#include "paddle/fluid/pybind/slice_utils.h"
L
Leo Chen 已提交
60
#include "paddle/fluid/pybind/tensor_py.h"
61
#include "paddle/fluid/pybind/uva_utils.h"
62
#include "paddle/phi/core/compat/arg_map_context.h"
63
#include "paddle/phi/core/type_defs.h"
64

65 66 67
namespace paddle {
namespace pybind {

68
std::atomic<int> VarBaseUniqueNameID{0};
69 70
PyTypeObject *g_varbase_pytype = nullptr;

71 72
namespace py = ::pybind11;

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
  }
}

class PyVariableWrapperHook : public imperative::VariableWrapperHook {
 public:
  explicit PyVariableWrapperHook(PyObject *func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyVariableWrapperHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  std::shared_ptr<imperative::VariableWrapper> operator()(
      const std::shared_ptr<imperative::VariableWrapper> &var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyVariableWrapperHook for var " << var->Name();

    // 1. unpack temp VarBase from VariableWrapper
    std::shared_ptr<imperative::VarBase> tmp_varbase =
        std::make_shared<imperative::VarBase>(var);

    // 2. call hook and return
    PyObject *res = nullptr;
    try {
106 107
      res = PyObject_CallFunctionObjArgs(
          py_func_, py::cast(tmp_varbase).ptr(), nullptr);
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    } catch (platform::EnforceNotMet &e) {
      throw std::move(e);
    } catch (std::exception &e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }

C
Chen Weihang 已提交
125 126 127 128 129
    auto res_varbase = PyObjectCast<std::shared_ptr<imperative::VarBase>>(res);
    // Here the reference count of `res` is 2, so we decreases the reference
    // count manually to avoid memory leaks
    Py_DECREF(res);
    return res_varbase->SharedVar();
130 131 132 133 134 135
  }

 private:
  PyObject *py_func_;
};

L
Leo Chen 已提交
136 137 138 139 140
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
141 142
  } else if (py::isinstance<platform::XPUPlace>(place_obj)) {
    return place_obj.cast<platform::XPUPlace>();
L
Leo Chen 已提交
143 144
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
145 146
  } else if (py::isinstance<platform::NPUPlace>(place_obj)) {
    return place_obj.cast<platform::NPUPlace>();
147 148
  } else if (py::isinstance<platform::IPUPlace>(place_obj)) {
    return place_obj.cast<platform::IPUPlace>();
149 150
  } else if (py::isinstance<platform::Place>(place_obj)) {
    return place_obj.cast<platform::Place>();
F
fwenguang 已提交
151 152
  } else if (py::isinstance<platform::MLUPlace>(place_obj)) {
    return place_obj.cast<platform::MLUPlace>();
153 154
  } else if (py::isinstance<platform::CustomPlace>(place_obj)) {
    return place_obj.cast<platform::CustomPlace>();
L
Leo Chen 已提交
155 156
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
157
        "Place should be one of "
158 159
        "Place/CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/IPUPlace/"
        "MLUPlace/CustomPlace"));
L
Leo Chen 已提交
160 161 162
  }
}

L
Leo Chen 已提交
163
// only initialize varbase, but not its tensor.
164 165 166 167
static void InitVarBaseOnly(imperative::VarBase *self,
                            const std::string &name,
                            bool persistable = false,
                            int stop_gradient = -1) {
168 169 170
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
L
Leo Chen 已提交
171 172 173

  VLOG(5) << "Init Tensor as: / name: " << name_
          << " / persistable: " << persistable
174
          << " / stop_gradient: " << stop_gradient;
L
Leo Chen 已提交
175 176 177 178 179 180 181 182 183
  new (self) imperative::VarBase(name_);
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
  self->SetPersistable(persistable);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
}

// initialize varbase and its tensor.
184 185 186 187 188 189 190
static void InitVarBaseAndTensor(imperative::VarBase *self,
                                 const py::array &array,
                                 const platform::Place &place,
                                 const std::string &name,
                                 bool persistable = false,
                                 bool zero_copy = false,
                                 int stop_gradient = -1) {
L
Leo Chen 已提交
191
  InitVarBaseOnly(self, name, persistable, stop_gradient);
192
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
L
Leo Chen 已提交
193
  VLOG(4) << "zero_copy: " << zero_copy;
L
Leo Chen 已提交
194
  if (platform::is_cpu_place(place)) {
195
    SetTensorFromPyArray<platform::CPUPlace>(tensor, array, place, zero_copy);
196
  } else if (platform::is_xpu_place(place)) {
197
    SetTensorFromPyArray<platform::XPUPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
198
  } else if (platform::is_gpu_place(place)) {
199
    SetTensorFromPyArray<platform::CUDAPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
200
  } else if (platform::is_cuda_pinned_place(place)) {
201 202
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        tensor, array, place, zero_copy);
203
  } else if (platform::is_npu_place(place)) {
204
    SetTensorFromPyArray<platform::NPUPlace>(tensor, array, place, zero_copy);
205 206
  } else if (platform::is_ipu_place(place)) {
    SetTensorFromPyArray<platform::IPUPlace>(tensor, array, place, zero_copy);
F
fwenguang 已提交
207
  } else if (platform::is_mlu_place(place)) {
208
    SetTensorFromPyArray<platform::MLUPlace>(tensor, array, place, zero_copy);
209
  } else if (platform::is_custom_place(place)) {
210 211
    SetTensorFromPyArray<platform::CustomPlace>(
        tensor, array, place, zero_copy);
212
  } else {
L
Leo Chen 已提交
213
    PADDLE_THROW(platform::errors::InvalidArgument(
214
        "Place should be one of "
215 216
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/IPUPlace/"
        "MLUPlace"));
J
Jiabin Yang 已提交
217
  }
218
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
219 220 221 222
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
223
  VLOG(4) << "Init VarBase from kwargs: ";
L
Leo Chen 已提交
224 225 226 227 228 229
  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
230 231 232
  auto stop_gradient = kwargs.contains("stop_gradient")
                           ? kwargs["stop_gradient"].cast<int>()
                           : -1;
L
Leo Chen 已提交
233
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
L
Leo Chen 已提交
234 235 236 237 238 239 240

  if (kwargs.contains("value")) {
    auto array = kwargs["value"].cast<py::array>();
    // place is only used when array is given, otherwise, it is meaningless and
    // ignored
    auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                          : default_place;
241 242
    InitVarBaseAndTensor(
        self, array, place, name, persistable, zero_copy, stop_gradient);
L
Leo Chen 已提交
243 244 245
  } else {
    InitVarBaseOnly(self, name, persistable, stop_gradient);
  }
246
}
247

248 249
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
250 251
                                        const py::array &array,
                                        const P &place,
L
Leo Chen 已提交
252 253
                                        bool persistable = false,
                                        bool zero_copy = false,
254 255 256 257 258
                                        std::string name = "",
                                        int stop_gradient = -1) {
  VLOG(4) << "Init VarBase from Arg: ";
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name , 6:
  // stop_gradient
L
Leo Chen 已提交
259
  if (name == "") {
260 261
    name =
        imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor");
L
Leo Chen 已提交
262
  }
263 264
  VLOG(5) << "Init Tensor as: / name: " << name
          << " / persistable: " << persistable << " / zero_copy: " << zero_copy
265
          << " / stop_gradient: " << stop_gradient << " / at " << place;
L
Leo Chen 已提交
266
  new (self) imperative::VarBase(name);
267 268
  self->SetPersistable(persistable);
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
269 270 271
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
272 273
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
274
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
275 276 277
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
278 279
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
280
  VLOG(4) << "Init VarBase from numpy at " << place;
L
Leo Chen 已提交
281
  InitVarBaseAndTensor(self, array, place, "");
282
}
283

B
Baibaifan 已提交
284 285 286
static void InitVarBaseFromTensorWithArgDefault(imperative::VarBase *self,
                                                const framework::Tensor &tensor,
                                                const std::string &name) {
287 288
  VLOG(4) << "Init VarBase";
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
289 290 291
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
292
  new (self) imperative::VarBase(name_);
293 294
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
295
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
296 297 298 299 300 301 302 303 304 305 306
  auto *new_tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  // Same place,share data directly
  if (place == tensor.place()) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

307 308 309
template <typename P>
static void InitVarBaseFromTensorWithArg(imperative::VarBase *self,
                                         const framework::Tensor &tensor,
B
Baibaifan 已提交
310 311
                                         const P &place,
                                         const std::string &name) {
312
  VLOG(4) << "Init VarBase";
313 314 315
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
316
  new (self) imperative::VarBase(name_);
317 318
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
319
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
320 321 322 323 324 325 326 327 328 329 330
  auto *new_tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  // Same place,share data directly
  if (platform::is_same_place(place, tensor.place())) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

331 332 333 334 335
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
336
  } else {
337
    return framework::ToTypeName(var.Var().Type());
338 339
  }
}
L
Leo Chen 已提交
340

J
Jiabin Yang 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
Py_ssize_t GetSliceIndexFromPyObject(PyObject *obj) {
  if (py::isinstance<imperative::VarBase>(obj)) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Imperative";
    return GetSliceIndexFromTensor(
        py::cast<std::shared_ptr<imperative::VarBase>>(obj)
            ->Var()
            .Get<framework::LoDTensor>());
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "We should only get paddle::experimental::Tensor or VarBase in this "
        "method, when you reach this means we got another type index."));
  }
}

bool PyCheckTensor(PyObject *obj) {
  return py::isinstance<imperative::VarBase>(obj);
}
358
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
359 360 361 362 363 364 365 366 367 368 369 370 371

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

372
  if (PyList_Check(py_obj)) {  // List of VarBase
373 374 375
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
376 377 378
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
379 380 381
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
382
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
383 384 385
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
386 387 388
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
389 390 391
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
392 393 394
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
395 396 397 398
  }

  return result;
}
399

J
Jiabin Yang 已提交
400 401 402
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
403 404 405 406 407 408
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
409

410
  PADDLE_ENFORCE_EQ(
411 412
      PyErr_Occurred(),
      nullptr,
413
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
414 415 416
  return result;
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
paddle::imperative::NameTensorMap ConvertToNameTensorMap(
    const PyNameVarBaseMap &map) {
  paddle::imperative::NameTensorMap result;
  for (auto &pair : map) {
    auto var_vec = CastPyArg2VectorOfTensor(pair.second.ptr(), 0);
    if (!var_vec.empty()) {
      // change vector<Tensor> -> vector<shared_ptr<Tensor>>
      std::vector<std::shared_ptr<egr::EagerVariable>> dst_var_vec;
      for (auto &v : var_vec) {
        dst_var_vec.emplace_back(
            std::make_shared<egr::EagerVariable>(std::move(v)));
      }
      result.emplace(pair.first, std::move(dst_var_vec));
    }
  }

  PADDLE_ENFORCE_EQ(
434 435
      PyErr_Occurred(),
      nullptr,
436 437 438 439
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
  return result;
}

440
template <typename P>
441 442
static void VarBaseCopy(std::shared_ptr<imperative::VarBase> &src,  // NOLINT
                        imperative::VarBase &dst,                   // NOLINT
443 444
                        const P &dst_device,
                        const bool blocking) {
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
  if (dst.SharedVar()->IsEmpty()) {
    VLOG(3) << "deep copy Variable from " << src->Name() << " to "
            << dst.Name();
    dst.SetPersistable(src->Persistable());
    dst.SetDataType(src->DataType());
    dst.SetType(src->Type());
    dst.SetOverridedStopGradient(src->OverridedStopGradient());
    if (!src->SharedVar()->IsEmpty()) {
      if (src->Var().IsType<framework::LoDTensor>()) {
        auto &src_tensor = src->Var().Get<framework::LoDTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<framework::LoDTensor>();
        dst_tensor->set_lod(src_tensor.lod());
        framework::TensorCopy(src_tensor, dst_device, dst_tensor);
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_tensor.place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
465 466
      } else if (src->Var().IsType<phi::SelectedRows>()) {
        auto &src_selected_rows = src->Var().Get<phi::SelectedRows>();
467
        auto *dst_selected_rows =
468
            dst.MutableVar()->GetMutable<phi::SelectedRows>();
469 470
        dst_selected_rows->set_height(src_selected_rows.height());
        dst_selected_rows->set_rows(src_selected_rows.rows());
471 472
        framework::TensorCopy(src_selected_rows.value(),
                              dst_device,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
                              dst_selected_rows->mutable_value());
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_selected_rows.value().place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
      }

      if (!blocking) {
        IncreaseVarbaseReferenceCountUntilCopyComplete(src, dst_device);
      }

    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The source Tensor(%s) can not copy when it is empty.", src->Name()));
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The destion Tensor(%s) can not copy when it is not empty.",
        dst.Name()));
  }
}

498
// Bind Methods
J
Jiabin Yang 已提交
499
void BindImperative(py::module *m_ptr) {
500 501
  auto &m = *m_ptr;

502 503 504 505 506 507 508 509
  BindOpFunctions1(&m);
  BindOpFunctions2(&m);
  BindOpFunctions3(&m);
  BindOpFunctions4(&m);
  BindOpFunctions5(&m);
  BindOpFunctions6(&m);
  BindOpFunctions7(&m);
  BindOpFunctions8(&m);
510

511 512
#ifndef _WIN32
  // Dygraph DataLoader signal handler
513 514
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
515 516
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
        true,
517 518 519 520 521 522 523 524 525 526
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
527
  });
528 529
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });
  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
551 552
              string::Sprintf("%s", array.dtype()).compare("object"),
              0,
553 554 555 556 557 558 559 560
              platform::errors::InvalidArgument(
                  "Faild to convert input data to a regular ndarray.\n  * "
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
          framework::LoDTensor t;
561 562
          SetTensorFromPyArray<platform::CPUPlace>(
              &t, array, platform::CPUPlace(), true);
563
          // 3. allocate shared memory
564
          void *data_ptr = t.data();
565
          size_t data_size = t.numel() * framework::DataTypeSize(t.dtype());
566 567 568 569 570 571
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
572 573 574 575 576
          memory::Copy(platform::CPUPlace(),
                       shared_writer_holder->ptr(),
                       platform::CPUPlace(),
                       data_ptr,
                       data_size);
577 578 579 580 581 582 583 584
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

585 586 587 588 589 590
  m.def(
      "_array_to_share_memory_tensor",
      [](py::object &obj) {
        // 1. cast to python array
        auto array = obj.cast<py::array>();
        PADDLE_ENFORCE_NE(
591 592
            string::Sprintf("%s", array.dtype()).compare("object"),
            0,
593 594 595 596 597 598 599 600
            platform::errors::InvalidArgument(
                "Faild to convert input data to a regular ndarray.\n  * "
                "Usually this means the input data contains nested "
                "lists with different lengths.\n  * Check the reader "
                "function passed to 'set_(sample/sample_list/batch)"
                "_generator' to locate the data causes this issue."));
        // 2. construcct LoDTensor
        framework::LoDTensor t;
601 602
        SetTensorFromPyArray<platform::CPUPlace>(
            &t, array, platform::CPUPlace(), true);
603 604 605 606 607 608 609 610 611
        // 3. allocate shared memory
        void *data_ptr = t.data();
        size_t data_size = t.numel() * framework::DataTypeSize(t.dtype());
        auto shared_writer_holder =
            memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
        // 4. maintain mmap fd set & backup ipc_name
        const std::string &ipc_name = shared_writer_holder->ipc_name();
        memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
        // 5. copy data & reset holder
612 613 614 615 616
        memory::Copy(platform::CPUPlace(),
                     shared_writer_holder->ptr(),
                     platform::CPUPlace(),
                     data_ptr,
                     data_size);
617 618 619 620 621
        t.ResetHolder(shared_writer_holder);

        return t;
      },
      py::return_value_policy::take_ownership);
K
Kaipeng Deng 已提交
622

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
      auto t = tensor_list[i].cast<framework::LoDTensor>();
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
#endif

643 644
  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });
645 646 647 648
  m.def("_set_eager_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          egr::Controller::Instance().SetCurrentTracer(tracer);
        });
649 650
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
651 652 653
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
654 655
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
J
Jiabin Yang 已提交
656
          egr::Controller::Instance().SetCurrentTracer(tracer);
657
          imperative::SetCurrentTracer(tracer);
658
        });
659 660 661 662
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>> varbase(
      m, "VarBase", R"DOC()DOC");
  g_varbase_pytype = (PyTypeObject *)varbase.ptr();  // NOLINT
  varbase.def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
663 664 665 666 667 668 669
      .def("__init__",
           [](imperative::VarBase &self) {
             std::string name =
                 imperative::GetCurrentTracer()->GenerateUniqueName(
                     "generated_tensor");
             new (&self) imperative::VarBase(name);
           })
J
Jiabin Yang 已提交
670
      .def("__init__",
671 672
           [](imperative::VarBase &self,
              framework::proto::VarType::Type dtype,
673
              const std::vector<int64_t> &dims,
674 675 676
              const py::handle &name,
              framework::proto::VarType::Type type,
              bool persistable) {
677
             VLOG(4) << "Init VarBase";
678 679 680
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
681
                   "generated_tensor");
682 683 684 685
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
686 687 688 689 690 691
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
               auto *tensor =
                   self.MutableVar()->GetMutable<framework::LoDTensor>();
692
               tensor->Resize(phi::make_ddim(dims));
J
Jiabin Yang 已提交
693 694
             }
           })
695 696 697 698 699 700 701
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
702
           py::arg("stop_gradient") = -1)
703 704 705 706 707 708 709
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::XPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
710
           py::arg("stop_gradient") = -1)
711 712 713 714 715 716 717
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
718
           py::arg("stop_gradient") = -1)
719 720 721 722 723 724 725
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
726
           py::arg("stop_gradient") = -1)
727 728 729 730 731 732 733
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::NPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
734
           py::arg("stop_gradient") = -1)
735 736 737 738 739 740 741
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::MLUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
F
fwenguang 已提交
742
           py::arg("stop_gradient") = -1)
743 744 745 746 747 748 749
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CustomPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
750
           py::arg("stop_gradient") = -1)
L
Leo Chen 已提交
751
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
      .def("__init__",
           &InitVarBaseFromTensorWithArgDefault,
           py::arg("tensor"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::XPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPinnedPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::NPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::MLUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CustomPlace>,
           py::arg("tensor"),
           py::arg("place"),
B
Baibaifan 已提交
790
           py::arg("name") = "")
791
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
792 793
      .def(
          "__setitem_varbase__",
794 795
          [](std::shared_ptr<imperative::VarBase> &self,
             py::handle _index,
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
             py::object &value_obj) {
            VLOG(4) << "Call __setitem_varbase__";

            auto self_tensor =
                self->MutableVar()->GetMutable<framework::LoDTensor>();
            // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
            // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
            PyObject *index_ptr = !PyTuple_Check(_index.ptr())
                                      ? PyTuple_Pack(1, _index.ptr())
                                      : _index.ptr();
            DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
              if (!PyTuple_Check(_index.ptr())) {
                Py_DECREF(index_ptr);
                VLOG(4) << "Call Py_DECREF";
              }
            });

            auto is_tensor = [](py::handle var) {
              if (!var.ptr() || var.ptr() == Py_None) {
                return false;
              }
              try {
                py::cast<std::shared_ptr<imperative::VarBase>>(var);
                return true;
              } catch (py::cast_error &) {
                return false;
              }
            };

825 826 827 828 829
            // NOTE(liym27):
            // Increase the version of VarBase self because __setitem__ is an
            // inplace operator for the VarBase self.
            self->BumpInplaceVersion();

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
            // 1. Check argumnets
            bool parse_index = true;

            // Check whether _index can be parsed.
            const int size = PyTuple_GET_SIZE(index_ptr);
            for (int dim = 0; dim < size; ++dim) {
              PyObject *slice_item = PyTuple_GetItem(index_ptr, dim);
              if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
                    slice_item == Py_Ellipsis || slice_item == Py_None)) {
                parse_index = false;
                break;
              }
            }

            // 2. Call op set_value to speed up if the condition is met,
            // otherwise call TensorToPyArray.
            // TODO(liym27): Try not to call TensorToPyArray because it always
            // copys data to cpu place, which reduces performance.
            if (parse_index) {
              std::vector<int> axes, starts, ends, steps, decrease_axes,
                  none_axes, infer_flags, list_select_idxs;
              // if index is a list, list_select_flag will be true
              bool list_select_flag = false;
853 854 855 856 857 858 859 860 861 862
              ParseIndexingSlice(self_tensor,
                                 index_ptr,
                                 &axes,
                                 &starts,
                                 &ends,
                                 &steps,
                                 &decrease_axes,
                                 &none_axes,
                                 &infer_flags,
                                 &list_select_idxs,
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
                                 &list_select_flag);

              framework::AttributeMap attrs = {{"axes", axes},
                                               {"starts", starts},
                                               {"ends", ends},
                                               {"steps", steps},
                                               {"decrease_axes", decrease_axes},
                                               {"none_axes", none_axes}};

              imperative::NameVarBaseMap ins = {{"Input", {self}}};
              imperative::NameVarBaseMap outs = {{"Out", {self}}};

              const auto &tracer = imperative::GetCurrentTracer();

              if (tracer->HasGrad()) {
                PADDLE_ENFORCE_EQ(
879 880
                    self->IsLeaf() && !self->OverridedStopGradient(),
                    false,
881 882 883 884 885 886 887 888 889 890
                    platform::errors::InvalidArgument(
                        "Leaf Tensor (%s) that doesn't stop gradient can't use "
                        "inplace strategy.",
                        self->Name()));
              }

              if (PyCheckTensor(value_obj.ptr())) {
                auto value_tensor =
                    value_obj.cast<std::shared_ptr<imperative::VarBase>>();
                ins.insert({"ValueTensor", {value_tensor}});
891 892 893 894 895 896

                // pass the stop_gradient from value to tensor
                if (!value_tensor->OverridedStopGradient() &&
                    self->OverridedStopGradient()) {
                  self->SetOverridedStopGradient(false);
                }
897 898 899 900 901 902 903
              } else if (py::isinstance<py::array>(value_obj)) {
                auto value_tensor = std::shared_ptr<imperative::VarBase>(
                    new imperative::VarBase(false,
                                            tracer->GenerateUniqueName()));
                py::object value = value_obj;
                if (self->DataType() == framework::proto::VarType::FP32) {
                  if (!py::isinstance<py::array_t<float>>(value_obj)) {
W
wanghuancoder 已提交
904
                    value = pybind11::detail::CastNumpyArray<float>(value_obj);
905 906 907 908
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::FP64) {
                  if (!py::isinstance<py::array_t<double>>(value_obj)) {
W
wanghuancoder 已提交
909
                    value = pybind11::detail::CastNumpyArray<double>(value_obj);
910 911 912 913
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT32) {
                  if (!py::isinstance<py::array_t<int32_t>>(value_obj)) {
W
wanghuancoder 已提交
914 915
                    value =
                        pybind11::detail::CastNumpyArray<int32_t>(value_obj);
916 917 918 919
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT64) {
                  if (!py::isinstance<py::array_t<int64_t>>(value_obj)) {
W
wanghuancoder 已提交
920 921
                    value =
                        pybind11::detail::CastNumpyArray<int64_t>(value_obj);
922 923 924 925
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::BOOL) {
                  if (!py::isinstance<py::array_t<bool>>(value_obj)) {
W
wanghuancoder 已提交
926
                    value = pybind11::detail::CastNumpyArray<bool>(value_obj);
927 928 929 930 931 932 933 934 935 936 937
                  }
                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "When assign a numpy.np value to a paddle.Tensor, "
                      "the data type of the paddle.Tensor must be bool, "
                      "float32, int32 or int64, "
                      "please check the type of tensor."));
                }

                SetTensorFromPyArray(value_tensor->MutableVar()
                                         ->GetMutable<framework::LoDTensor>(),
938 939 940
                                     value,
                                     self->Place(),
                                     false);
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
                ins.insert({"ValueTensor", {value_tensor}});

              } else {
                // convert the value to self data type
                if (py::isinstance<py::float_>(value_obj) ||
                    py::isinstance<py::int_>(value_obj) ||
                    py::isinstance<py::bool_>(value_obj)) {
                  if (self->DataType() == framework::proto::VarType::FP32) {
                    attrs["fp32_values"] =
                        std::vector<float>{value_obj.cast<float>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP64) {
                    attrs["fp64_values"] =
                        std::vector<double>{value_obj.cast<double>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT32) {
                    attrs["int32_values"] =
                        std::vector<int32_t>{value_obj.cast<int32_t>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT64) {
                    attrs["int64_values"] =
                        std::vector<int64_t>{value_obj.cast<int64_t>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::BOOL) {
                    attrs["bool_values"] =
                        std::vector<int>{value_obj.cast<bool>()};
                  } else {
                    PADDLE_THROW(platform::errors::InvalidArgument(
                        "When assign a value to a paddle.Tensor, "
                        "the data type of the paddle.Tensor must be bool, "
                        "float32, int32 or int64, "
                        "please check the type of tensor."));
                  }
                  attrs["shape"] = std::vector<int64_t>{1};

                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "Value type error. The assign value allows "
                      "numpy.ndarray, integer, float or bool, "
                      "but received %s.",
                      Py_TYPE(value_obj.ptr())));
                }
              }

              {
                // Release gil and do tracing
                py::gil_scoped_release release;
988 989 990 991
                tracer->TraceOp("set_value",
                                ins,
                                outs,
                                std::move(attrs),
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
                                {{"Input", "Out"}});
              }
            } else {
              auto self_numpy = TensorToPyArray(*self_tensor);
              VLOG(4) << "parse_index is false";
              if (is_tensor(_index)) {
                VLOG(4) << "index is tensor";
                auto index_var =
                    py::cast<std::shared_ptr<imperative::VarBase>>(_index);
                auto index_tensor =
                    index_var->MutableVar()->GetMutable<framework::LoDTensor>();
                auto index_numpy = TensorToPyArray(*index_tensor);
                self_numpy[index_numpy] = value_obj;
              } else {
                VLOG(4) << "index is not tensor";
                self_numpy[_index] = value_obj;
              }
1009 1010
              SetTensorFromPyArray(
                  self_tensor, self_numpy, self_tensor->place(), false);
1011 1012
            }
          })
1013
      .def("_getitem_index_not_tensor",
S
songyouwei 已提交
1014
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
1015
             VLOG(4) << "Call _getitem_index_not_tensor";
1016
             std::vector<int> slice_axes, slice_starts, slice_ends,
Z
zyfncg 已提交
1017 1018 1019 1020
                 slice_strides, decrease_axis, none_axes, infer_flags,
                 list_select_idxs;
             // if index is a list, list_select_flag will be true
             bool list_select_flag = false;
S
songyouwei 已提交
1021 1022
             auto tensor =
                 self->MutableVar()->GetMutable<framework::LoDTensor>();
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
             ParseIndexingSlice(tensor,
                                _index.ptr(),
                                &slice_axes,
                                &slice_starts,
                                &slice_ends,
                                &slice_strides,
                                &decrease_axis,
                                &none_axes,
                                &infer_flags,
                                &list_select_idxs,
                                &list_select_flag);
1034 1035 1036
             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
1037

Z
zyfncg 已提交
1038
             auto out = slice_axes.empty() && !list_select_flag
1039 1040 1041 1042
                            ? self
                            : std::shared_ptr<imperative::VarBase>(
                                  new imperative::VarBase(
                                      tracer->GenerateUniqueName()));
Z
zyfncg 已提交
1043

1044
             if (!slice_axes.empty()) {
S
songyouwei 已提交
1045
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
             }
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
             if (!none_axes.empty()) {
               // Deal with cases when all axes are decreased.
               // After slice, the shape of out is [1], which should have been
               // [], but Paddle doesn't support scalar.
               // In order to ensure the correctness of the final shape of out,
               // one dimension of out needs to be decreased.
               // For example:
               // # x.shape: (2,3,4)
               // out = x[0, 1, 1, None] # out.shape : (1)
               if (static_cast<int>(decrease_axis.size()) ==
                   tensor->dims().size()) {
                 none_axes.pop_back();
               }
               if (!none_axes.empty()) {
                 // Deal with cases that decrease_axes is not empty
                 // For example:
                 // # x.shape: (2,3,4)
                 // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
                 for (auto &axis : none_axes) {
                   int len = 0;
                   for (int da : decrease_axis) {
                     if (da < axis) {
                       len++;
                     }
                   }
                   axis -= len;
                 }

                 imperative::NameVarBaseMap ins = {{"X", {out}}};
                 framework::AttributeMap attrs = {{"axes", none_axes}};
                 auto new_out = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 auto out_xshape = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 imperative::NameVarBaseMap outs = {{"Out", {new_out}},
                                                    {"XShape", {out_xshape}}};
                 tracer->TraceOp("unsqueeze2", ins, outs, std::move(attrs));

                 return new_out;
               }
             }

Z
zyfncg 已提交
1106 1107 1108 1109 1110 1111 1112 1113
             // the index is a list
             if (list_select_flag) {
               auto select_index = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
               auto *idx_tensor = select_index->MutableVar()
                                      ->GetMutable<framework::LoDTensor>();
               auto *dev_ctx = platform::DeviceContextPool::Instance().Get(
                   tracer->ExpectedPlace());
1114 1115
               paddle::framework::TensorFromVector(
                   list_select_idxs, *dev_ctx, idx_tensor);
Z
zyfncg 已提交
1116 1117 1118 1119 1120 1121 1122

               imperative::NameVarBaseMap ins = {{"X", {self}},
                                                 {"Index", {select_index}}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               tracer->TraceOp("index_select", ins, outs, {{"dim", 0}});
             }

1123
             return out;
1124
           })
1125 1126 1127 1128 1129
      .def(
          "_getitem_from_offset",
          [](std::shared_ptr<imperative::VarBase> &self, const py::args &args) {
            const auto &tensor = self->Var().Get<framework::LoDTensor>();
            PADDLE_ENFORCE_EQ(
1130 1131
                tensor.IsInitialized(),
                true,
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self->Name()));

            const auto &tensor_dims = tensor.dims();

            std::vector<size_t> dims(tensor_dims.size());
            std::vector<size_t> strides(tensor_dims.size());

            size_t numel = 1;
            for (int i = tensor_dims.size() - 1; i >= 0; --i) {
              strides[i] = numel;
              dims[i] = static_cast<size_t>(tensor_dims[i]);
              numel *= dims[i];
            }
            size_t offset = 0;
            if (args.empty()) {
              PADDLE_ENFORCE_EQ(
1150 1151
                  numel,
                  1,
1152 1153 1154 1155 1156 1157
                  platform::errors::InvalidArgument(
                      "only one element tensors can be converted to Python "
                      "scalars when no input coordinates"));
            } else if (args.size() == 1) {
              offset = args[0].cast<size_t>();
              PADDLE_ENFORCE_LT(
1158 1159
                  offset,
                  numel,
1160 1161 1162
                  platform::errors::InvalidArgument(
                      "index %d is out of bounds for size %d", offset, numel));
            } else {
1163 1164
              PADDLE_ENFORCE_EQ(args.size(),
                                dims.size(),
1165 1166 1167 1168 1169 1170
                                platform::errors::InvalidArgument(
                                    "incorrect number of indices for Tensor"));

              for (size_t i = 0; i < args.size(); ++i) {
                size_t index = args[i].cast<size_t>();
                PADDLE_ENFORCE_LT(
1171 1172
                    index,
                    dims[i],
1173 1174
                    platform::errors::InvalidArgument(
                        "index %d is out fo bounds for axis %d with size %d",
1175 1176 1177
                        index,
                        i,
                        dims[i]));
1178 1179 1180 1181
                offset += index * strides[i];
              }
            }
#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
1182
  if (framework::TransToProtoVarType(tensor.dtype()) == proto_type) {        \
1183 1184
    std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(proto_type); \
    T b = TensorGetElement<T>(tensor, offset);                               \
1185 1186
    return py::array(                                                        \
        py::dtype(py_dtype_str.c_str()), {}, {}, static_cast<void *>(&b));   \
1187 1188 1189 1190 1191
  }

            _ForEachDataType_(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
            PADDLE_THROW(platform::errors::Unimplemented(
1192
                "Unsupported tensor data type: %s", tensor.dtype()));
1193 1194
          },
          py::return_value_policy::copy)
1195 1196 1197 1198
      .def("_inplace_version",
           [](imperative::VarBase &self) -> uint32_t {
             const auto &var = self.MutableVar();
             PADDLE_ENFORCE_EQ(
1199 1200
                 var->IsInitialized(),
                 true,
1201 1202 1203 1204 1205
                 platform::errors::InvalidArgument(
                     "Tensor of %s is Empty, please check if it has no data.",
                     self.Name()));
             return var->CurrentInplaceVersion();
           })
1206 1207 1208 1209 1210 1211 1212 1213
      .def(
          "_bump_inplace_version",
          [](std::shared_ptr<imperative::VarBase> &self) {
            // NOTE(liym27): _bump_inplace_version is only used for inplace
            // operation
            self->BumpInplaceVersion();
          },
          R"DOC(
1214 1215 1216 1217 1218
        **Notes**:
            **This API is ONLY available in Dygraph mode.**
            **This is a very low level API. Users should not use it directly. **
         Bump the version whenever the Tensor is modified through an inplace operation.
            )DOC")
1219 1220
      .def(
          "numpy",
1221

1222 1223 1224
          [](imperative::VarBase &self) -> py::array {
            const auto &tensor = self.MutableVar()->Get<framework::LoDTensor>();
            PADDLE_ENFORCE_EQ(
1225 1226
                tensor.IsInitialized(),
                true,
1227 1228 1229 1230 1231 1232
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self.Name()));
            return TensorToPyArray(tensor, true);
          },
          R"DOC(
Z
Zhou Wei 已提交
1233 1234
        Returns a numpy array shows the value of current Tensor.
        
1235
        Returns:
Z
Zhou Wei 已提交
1236
            ndarray: The numpy value of current Tensor.
1237 1238

        Returns type:
Z
Zhou Wei 已提交
1239
            ndarray: dtype is same as current Tensor
1240 1241 1242 1243

        Examples:
            .. code-block:: python

Z
Zhou Wei 已提交
1244
                import paddle
1245 1246
                import numpy as np
                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
Z
Zhou Wei 已提交
1247 1248 1249 1250
                linear = paddle.nn.Linear(32, 64)
                data = paddle.to_tensor(data)
                x = linear(data)
                print(x.numpy())
1251
       )DOC")
1252 1253 1254 1255 1256
      .def(
          "detach",
          [](const imperative::VarBase &self)
              -> std::shared_ptr<imperative::VarBase> {
            PADDLE_ENFORCE_EQ(
1257 1258
                self.Var().IsInitialized(),
                true,
1259 1260
                platform::errors::InvalidArgument(
                    "Tensor %s has not been initialized!", self.Name()));
1261

1262 1263 1264 1265 1266 1267 1268
            PADDLE_ENFORCE_EQ(
                self.Var().IsType<framework::LoDTensor>() ||
                    self.Var().IsType<phi::SelectedRows>(),
                true,
                platform::errors::InvalidArgument(
                    "Type of Tensor[%s] must be LoDTensor or SelectedRows!",
                    self.Name()));
1269

1270 1271
            auto detach_var = std::make_shared<imperative::VarBase>(
                true, "detach_" + self.Name());
1272

1273 1274 1275
            detach_var->SetPersistable(self.Persistable());
            detach_var->SetType(self.Type());
            detach_var->SetDataType(self.DataType());
1276

1277 1278 1279 1280
            if (self.Var().IsType<framework::LoDTensor>()) {
              const auto &origin_tensor =
                  self.Var().Get<framework::LoDTensor>();
              PADDLE_ENFORCE_EQ(
1281 1282
                  origin_tensor.IsInitialized(),
                  true,
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_tensor =
                  detach_var->MutableVar()->GetMutable<framework::LoDTensor>();
              detach_tensor->ShareDataWith(origin_tensor);
              // NOTE(liym27): Call ShareInplaceVersionCounterWith to share the
              // same TensorInplaceVersion, which is used to check whether
              // inplace
              // operations are correct.
              detach_tensor->ShareInplaceVersionCounterWith(origin_tensor);
            } else {
              const auto &origin_selected_rows =
                  self.Var().Get<phi::SelectedRows>();
              PADDLE_ENFORCE_EQ(
1298 1299
                  origin_selected_rows.value().IsInitialized(),
                  true,
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_selected_rows =
                  detach_var->MutableVar()->GetMutable<phi::SelectedRows>();
              detach_selected_rows->set_height(origin_selected_rows.height());
              detach_selected_rows->set_rows(origin_selected_rows.rows());
              detach_selected_rows->mutable_value()->ShareDataWith(
                  origin_selected_rows.value());
              detach_selected_rows->mutable_value()
                  ->ShareInplaceVersionCounterWith(
                      origin_selected_rows.value());
            }
            VLOG(3) << "The detached Tensor(" << detach_var->Name()
                    << ") share data with " << self.Name();
            return detach_var;
          },
1317 1318
          py::return_value_policy::take_ownership,
          R"DOC(
1319

1320
        Returns a new Tensor, detached from the current graph.
Z
Zhou Wei 已提交
1321 1322
        It will share data with origin Tensor and always doesn't have a Tensor copy.
        In addition, the detached Tensor doesn't provide gradient propagation.
1323

1324
        Returns: The detached Tensor.
1325 1326 1327 1328

        Examples:
            .. code-block:: python

1329
                import paddle
Z
Zhou Wei 已提交
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354

                x = paddle.to_tensor(1.0, stop_gradient=False)
                detach_x = x.detach()
                detach_x[:] = 10.0
                print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                          #        [10.])
                y = x**2
                y.backward()
                print(x.grad)         # [20.0]
                print(detach_x.grad)  # None, 'stop_gradient=True' by default

                detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
                z = detach_x**3
                z.backward()

                print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
                print(detach_x.grad)  # [300.0], detach_x has its own graph

                # Due to sharing of data with origin Tensor, There are some unsafe operations:
                y = 2 * x
                detach_x[:] = 5.0
                y.backward() 
                # It will raise Error:
                #   one of the variables needed for gradient computation has been modified by an inplace operation.
             
1355
       )DOC")
1356 1357 1358 1359
      .def("clear_gradient",
           &imperative::VarBase::ClearGradient,
           py::arg("set_to_zero") = true,
           R"DOC(
1360

1361
        Only for Tensor that has gradient, normally we use this for Parameters since other temporary Tensor doesen't has gradient.
1362

1363
        The Gradient of current Tensor will be set to ``0`` .
1364 1365 1366 1367 1368 1369

        Returns:  None

        Examples:
             .. code-block:: python

1370
                import paddle
Z
Zhou Wei 已提交
1371 1372 1373 1374 1375 1376 1377
                input = paddle.uniform([10, 2])
                linear = paddle.nn.Linear(2, 3)
                out = linear(input)
                out.backward()
                print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
                linear.weight.clear_gradient()
                print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
1378
      )DOC")
1379 1380
      .def("_gradient_set_empty",
           &imperative::VarBase::_GradientSetEmpty,
1381 1382
           py::arg("set_is_empty") = true)
      .def("_is_gradient_set_empty", &imperative::VarBase::_IsGradientSetEmpty)
1383 1384 1385 1386
      .def(
          "clone",
          [](std::shared_ptr<imperative::VarBase> &self) {
            const auto &tensor = self->Var().Get<framework::LoDTensor>();
1387 1388
            PADDLE_ENFORCE_EQ(tensor.IsInitialized(),
                              true,
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
                              platform::errors::InvalidArgument(
                                  "%s has not been initialized", self->Name()));
            auto tracer = imperative::GetCurrentTracer();
            auto new_var = std::make_shared<imperative::VarBase>(
                true, tracer->GenerateUniqueName(self->Name() + "_clone"));
            framework::AttributeMap attrs;
            imperative::NameVarBaseMap ins = {{"X", {self}}};
            imperative::NameVarBaseMap outs = {{"Out", {new_var}}};
            tracer->TraceOp("assign", ins, outs, attrs);
            return new_var;
          },
1400 1401
          py::return_value_policy::copy,
          R"DOC(
Z
Zhou Wei 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

        Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
        It will always have a Tensor copy.
        Tn addition, the cloned Tensor provides gradient propagation.

        Returns: The cloned Tensor.

        Examples:
            .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.0, stop_gradient=False)
              clone_x = x.clone()
              y = clone_x**2
              y.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [2.0], support gradient propagation
              print(x.stop_gradient)       # False
              print(x.grad)                # [2.0], clone_x support gradient propagation for x

              x = paddle.to_tensor(1.0)
              clone_x = x.clone()
              clone_x.stop_gradient = False
              z = clone_x**3
              z.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [3.0], support gradient propagation
              print(x.stop_gradient) # True
              print(x.grad)          # None
       )DOC")
L
Leo Chen 已提交
1433
      .def("_grad_name", &imperative::VarBase::GradVarName)
1434 1435 1436 1437 1438 1439
      .def(
          "_grad_value",
          [](imperative::VarBase &self) {
            return self.MutableGradVar()->Get<framework::LoDTensor>();
          },
          py::return_value_policy::reference)
1440 1441 1442 1443
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
1444
      .def("_reset_grad_inplace_version",
1445
           [](imperative::VarBase &self, bool set_to_zero) {
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
             /*
             *** This interfaceis a complete hack ***
             reset_grad_inplace_version removes all inplace related records to
             Grad VarBase/VariableWrapper,
             the essential purpose of which is to let you use inplace operations
             as if using its non-inplaced version,
             which of course will cause unexpected consequences if not used with
             care.
             Make sure you fully understand what you're doing before make use of
             this interface, and prepare for the worst.
             */
1457 1458
             py::gil_scoped_release release;

1459 1460 1461
             if (self.HasGradVar()) {
               auto grad_var = self.GradVarBase();
               auto var_wrapper = grad_var->SharedVar();
1462 1463 1464
               if (var_wrapper) {
                 var_wrapper->ResetInplaceVersion(set_to_zero);
               }
1465 1466
             }
           })
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
      .def(
          "_grad_ivar",
          [](const imperative::VarBase &self) {
            auto &grad_var = self.GradVarBase();

            if (grad_var && grad_var->Var().IsInitialized()) {
              auto *tensor =
                  grad_var->MutableVar()->IsType<framework::LoDTensor>()
                      ? grad_var->MutableVar()
                            ->GetMutable<framework::LoDTensor>()
                      : grad_var->MutableVar()
                            ->GetMutable<phi::SelectedRows>()
                            ->mutable_value();

              if (tensor->IsInitialized()) {
                return grad_var;
              }
            }
            return std::shared_ptr<imperative::VarBase>(nullptr);
          },
          py::return_value_policy::copy)
C
chentianyu03 已提交
1488 1489 1490 1491
      .def("_set_grad_ivar",
           [](imperative::VarBase &self, imperative::VarBase &grad) {
             self.SetGradVarBase(grad);
           })
1492 1493
      .def("_is_sparse",
           [](imperative::VarBase &self) {
1494
             return self.Var().IsType<phi::SelectedRows>();
1495
           })
1496 1497 1498 1499 1500
      .def(
          "_allreduce",
          [](imperative::VarBase &self,
             const imperative::ParallelStrategy &strategy) {
            if (strategy.nranks_ > 1) {
1501
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1502
#if NCCL_VERSION_CODE >= 2212
1503
              imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
1504
#else
1505
               if (!self.Var().IsType<phi::SelectedRows>()) {
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
                 imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
               } else {
                 PADDLE_THROW(platform::errors::Unimplemented(
                     "Imperative SelectedRows allreduce is not supported when "
                     "paddle is compiled with NCCL verison lower than v2.2.12. "
                     "You can set is_sparse=False for the Layer containing "
                     "this argument, such as Embedding(is_sparse=False)."));
               }
#endif  // NCCL_VERSION_CODE
#else
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Imperative allreduce is not supported when paddle is "
                   "not compiled with NCCL."));
1519
#endif  // PADDLE_WITH_NCCL or PADDLE_WITH_RCCL
1520 1521 1522
            }
          },
          py::call_guard<py::gil_scoped_release>())
1523 1524 1525
      .def("_register_grad_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1526 1527
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1528
                 platform::errors::InvalidArgument(
1529 1530 1531
                     "Cannot register gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->AddVariableWrapperHook(
1532 1533 1534 1535 1536
                 std::make_shared<PyVariableWrapperHook>(hook.ptr()));
           })
      .def("_remove_grad_hook",
           [](imperative::VarBase &self, int64_t hook_id) {
             PADDLE_ENFORCE_EQ(
1537 1538
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1539
                 platform::errors::InvalidArgument(
1540 1541 1542
                     "Cannot remove gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->RemoveVariableWrapperHook(hook_id);
1543
           })
1544 1545 1546
      .def("_register_void_function_post_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1547 1548
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
                 platform::errors::InvalidArgument(
                     "Cannot register void function post hook on a Tensor that "
                     "stop "
                     "gradient or without gradient."));
             auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
             auto grad_node = self.MutableGradVarBase()->GradNode();
             for (auto &cur_op : *grad_node) {
               cur_op.AddVoidFunctionPostHook(
                   std::make_shared<std::function<void()>>(py_func));
             }
           })
1560 1561 1562 1563
      .def(
          "_register_backward_hook",
          [](imperative::VarBase &self, const py::handle &hook) {
            PADDLE_ENFORCE_EQ(
1564 1565
                self.IsLeaf(),
                true,
1566 1567 1568
                platform::errors::InvalidArgument(
                    "Only can register backward hook for leaf Tensor."));
            PADDLE_ENFORCE_EQ(
1569 1570
                !self.OverridedStopGradient() && self.HasGradVar(),
                true,
1571 1572 1573 1574 1575 1576 1577 1578
                platform::errors::InvalidArgument(
                    "Cannot register backward hook on a Tensor that stop "
                    "gradient or without gradient."));
            auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
            self.GradVarBase()->AddVoidHook(
                std::make_shared<std::function<void()>>(py_func));
          },
          R"DOC(
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
             Registers a backward hook for current Tensor.

             This hook will be called every time the gradient of current Tensor has been fully calculated.

             There are two differences with `_register_grad_hook`:
             1. This backward hook will be executed after the gradient accumulation completed across batchs,
                but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
                completed in current batch.
             2. This backward hook function should have the following signature:

                  hook() -> None

                It requires no input and no return value.

             Args:
                 hook(function): A backward hook to be registered for Tensor.gradient

             Returns:
                 None
           )DOC")
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
      .def(
          "cpu",
          [](const std::shared_ptr<imperative::VarBase> &self) {
            if (platform::is_cpu_place(self->Place())) {
              return self;
            } else {
              auto new_var = self->NewVarBase(platform::CPUPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
        Returns a copy of this Tensor in CPU memory.

        If this Tensor is already in CPU memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)    # CUDAPlace(0)
              
              y = x.cpu()
              print(y.place)    # CPUPlace

              )DOC")
1626 1627 1628
      .def(
          "pin_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
1629
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1630 1631 1632 1633
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to pinned memory in CPU version "
                "Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1634
#endif
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
            if (platform::is_cuda_pinned_place(self->Place())) {
              return self;
            } else {
              auto new_var =
                  self->NewVarBase(platform::CUDAPinnedPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
        Returns a copy of this Tensor in pin memory.

        If this Tensor is already in pin memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)      # CUDAPlace(0)

              y = x.pin_memory()
              print(y.place)      # CUDAPinnedPlace

      )DOC")
1660 1661 1662
      .def(
          "cuda",
          [](const std::shared_ptr<imperative::VarBase> &self,
1663 1664
             py::handle &handle,
             bool blocking) {
1665
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1666 1667 1668
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to GPU in CPU version Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1669
#else
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
            int device_count = platform::GetGPUDeviceCount();
            int device_id = 0;
            if (handle == py::none()) {
              auto default_place =
                  imperative::GetCurrentTracer()->ExpectedPlace();
              device_id = default_place.GetDeviceId();
            } else {
              PyObject *py_obj = handle.ptr();
              PADDLE_ENFORCE_EQ(
                  PyCheckInteger(py_obj), true,
                  platform::errors::InvalidArgument(
                      " 'device_id' must be a positive integer"));
              device_id = py::cast<int>(handle);
            }
            PADDLE_ENFORCE_GE(
                device_id, 0,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            PADDLE_ENFORCE_LT(
                device_id, device_count,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            platform::CUDAPlace place = platform::CUDAPlace(device_id);
            if (platform::is_same_place(self->Place(), place)) {
              return self;
            } else {
              auto new_var = self->NewVarBase(place, blocking);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
1704
#endif
1705
          },
1706 1707 1708
          py::arg("device_id") = py::none(),
          py::arg("blocking") = true,
          R"DOC(
1709 1710 1711 1712 1713 1714
        Returns a copy of this Tensor in GPU memory.

        If this Tensor is already in GPU memory and device_id is default, 
        then no copy is performed and the original Tensor is returned.
        
        Args:
1715
            device_id(int, optional): The destination GPU device id. Default: None, means current device.
1716 1717 1718 1719 1720 1721
            blocking(bool, optional): If False and the source is in pinned memory, the copy will be 
              asynchronous with respect to the host. Otherwise, the argument has no effect. Default: False.

        Examples:
            .. code-block:: python

1722
              # required: gpu
1723 1724
              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CPUPlace())
1725
              print(x.place)        # Place(cpu)
1726 1727

              y = x.cuda()
1728
              print(y.place)        # Place(gpu:0)
1729 1730
            
              y = x.cuda(None)
1731
              print(y.place)        # Place(gpu:0)
1732

1733 1734 1735
              paddle.device.set_device("gpu:1")
              y = x.cuda(None)
              print(y.place)        # Place(gpu:1)
1736
       )DOC")
1737 1738 1739
      .def(
          "_share_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
K
Kaipeng Deng 已提交
1740
#ifndef _WIN32
1741
            PADDLE_ENFORCE_EQ(
1742 1743
                platform::is_cpu_place(self->Place()),
                true,
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
                platform::errors::InvalidArgument(
                    "Sharing memory only support CPU Tensor currently"));
            // 1. get LoDTensor
            auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
            // 2. allocate shared memory
            void *data_ptr = t->data();
            size_t data_size =
                t->numel() * framework::SizeOfType(
                                 framework::TransToProtoVarType(t->dtype()));
            auto shared_writer_holder =
                memory::allocation::AllocateMemoryMapWriterAllocation(
                    data_size);
            // 3. maintain mmap fd set & backup ipc_name
            const std::string &ipc_name = shared_writer_holder->ipc_name();
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
            // 4. copy data & reset holder
1760 1761 1762 1763 1764
            memory::Copy(platform::CPUPlace(),
                         shared_writer_holder->ptr(),
                         platform::CPUPlace(),
                         data_ptr,
                         data_size);
1765 1766
            t->ResetHolder(shared_writer_holder);
            return *t;
K
Kaipeng Deng 已提交
1767 1768 1769 1770
#else
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Sharing memory in Windows OS is not supported currently"));
#endif
1771 1772
          },
          py::return_value_policy::reference)
1773
#if defined(PADDLE_WITH_CUDA)
1774 1775 1776
      .def(
          "_uva",
          [](const std::shared_ptr<imperative::VarBase> &self, int device_id) {
1777 1778
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->Place()),
                              true,
1779 1780 1781 1782 1783 1784 1785
                              platform::errors::InvalidArgument(
                                  "Unified virtual addressing only support "
                                  "CPU Tensor currently."));
            auto *self_tensor =
                self->MutableVar()->GetMutable<framework::LoDTensor>();
            tensor_uva(self_tensor, device_id);
          },
1786 1787 1788
          py::arg("device_id") = 0,
          py::return_value_policy::reference,
          R"DOC(
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
       )DOC")
#endif
1804
      .def("copy_", &imperative::VarBase::CopyFrom)
1805 1806 1807
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1808 1809
             const platform::CPUPlace &place,
             bool blocking) {
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
            auto new_var = self->NewVarBase(place, blocking);
            // Note(zhiqiu): Since NewVarBase may use GpuCopyAsync to
            // copy data from the tensor of self to the tensor of new varbase,
            // we need to ensure that the varbase self is not destructed until
            // the GpuCopyAsync is completed. Otherwise, the memory may be
            // freed
            // when varbase self is destructed.
            // To do that, we increase the reference count of self by 1 and
            // add a cuda event to wait the GpuCopyAsync's completion.
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1828 1829
             const platform::CUDAPinnedPlace &place,
             bool blocking) {
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1840 1841
             const platform::XPUPlace &place,
             bool blocking) {
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1852 1853
             const platform::CUDAPlace &place,
             bool blocking) {
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1864 1865
             const platform::NPUPlace &place,
             bool blocking) {
1866 1867 1868 1869 1870 1871 1872
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
             const platform::IPUPlace &place,
             bool blocking) {
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1885 1886 1887
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1888 1889
             const platform::MLUPlace &place,
             bool blocking) {
1890 1891 1892 1893 1894 1895 1896
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1897 1898 1899
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1900 1901
             const platform::CustomPlace &place,
             bool blocking) {
1902 1903 1904 1905 1906 1907 1908
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1909 1910 1911
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1912 1913
             const platform::Place &place,
             bool blocking) {
1914 1915 1916 1917 1918 1919 1920 1921
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
1922 1923
          "value",
          [](imperative::VarBase &self) { return self.MutableVar(); },
1924
          py::return_value_policy::reference)
1925 1926 1927
      .def("_clear",
           [](const std::shared_ptr<imperative::VarBase> &self) {
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
1928
             PADDLE_ENFORCE_EQ(
1929 1930
                 t->IsInitialized(),
                 true,
1931 1932
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1933 1934 1935 1936 1937
             t->clear();
           })
      .def("_offset",
           [](const std::shared_ptr<imperative::VarBase> &self) {
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
1938
             PADDLE_ENFORCE_EQ(
1939 1940
                 t->IsInitialized(),
                 true,
1941 1942
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1943 1944
             return t->offset();
           })
1945
      .def("_share_buffer_to",
1946
           [](const std::shared_ptr<imperative::VarBase> &self,
1947 1948 1949 1950
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
1951 1952
                 src->IsInitialized(),
                 true,
1953 1954 1955
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
B
Baibaifan 已提交
1956
             dst_->ShareDataTypeWith(*src);
1957 1958 1959
           })
      .def("_is_shared_buffer_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
1960 1961 1962 1963 1964 1965 1966
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
1967
           })
1968 1969 1970 1971 1972 1973
      .def("_share_underline_tensor_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
1974 1975
                 src->IsInitialized(),
                 true,
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
             dst_->ShareDataTypeWith(*src);
             dst_->Resize(src->dims());
           })
      .def("_is_shared_underline_tensor_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
           })
1992 1993
      .def("_slice",
           [](const std::shared_ptr<imperative::VarBase> &self,
1994 1995
              int64_t begin_idx,
              int64_t end_idx) {
1996
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
1997
             PADDLE_ENFORCE_EQ(
1998 1999
                 t->IsInitialized(),
                 true,
2000 2001
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
             return t->Slice(begin_idx, end_idx);
           })
      .def("_copy_gradient_from",
           [](std::shared_ptr<imperative::VarBase> &self,
              const imperative::VarBase &src) { self->_CopyGradientFrom(src); })
      .def("_numel",
           [](std::shared_ptr<imperative::VarBase> &self) {
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
             return t->numel();
           })
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
      .def("element_size", &imperative::VarBase::ElementSize, R"DOC(
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle

            x = paddle.to_tensor(1, dtype='bool')
            x.element_size() # 1

            x = paddle.to_tensor(1, dtype='float16')
            x.element_size() # 2

            x = paddle.to_tensor(1, dtype='float32')
            x.element_size() # 4

            x = paddle.to_tensor(1, dtype='float64')
            x.element_size() # 8

            x = paddle.to_tensor(1, dtype='complex128')
            x.element_size() # 16
       )DOC")
2035 2036
      .def_property(
          "name", &imperative::VarBase::Name, &imperative::VarBase::SetName)
L
Leo Chen 已提交
2037 2038 2039
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
2040 2041
      .def_property("persistable",
                    &imperative::VarBase::Persistable,
L
Leo Chen 已提交
2042
                    &imperative::VarBase::SetPersistable)
2043 2044 2045 2046
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
            if (self.Var().IsType<framework::LoDTensor>()) {
2047
              auto value = phi::vectorize<int>(
2048
                  self.Var().Get<framework::LoDTensor>().dims());
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
              auto tensor = self.Var().Get<framework::LoDTensor>();
              auto tmp_value = value;
              auto desired_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDesiredLayout();
              auto default_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDefaultLayout();
              bool change_dim =
                  (desired_layout != default_layout &&
                   tensor.layout() == desired_layout && value.size() == 4);
              VLOG(6) << "'Shape' method, layout autotune,"
                      << " desired_layout: " << desired_layout
                      << " default_layout: " << default_layout
                      << " tensor layout: " << tensor.layout()
                      << " tensor's shape size is : " << value.size();

              if (change_dim && paddle::framework::DataLayoutToString(
                                    desired_layout) == "NCHW") {
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[3] << " "
                        << tmp_value[1] << " " << tmp_value[2] << " "
                        << tmp_value[1];
                // NCHW -> NHWC
                value[1] = tmp_value[2];
                value[2] = tmp_value[3];
                value[3] = tmp_value[1];
              } else if (change_dim && paddle::framework::DataLayoutToString(
                                           desired_layout) == "NHWC") {
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[0] << " "
                        << tmp_value[3] << " " << tmp_value[1] << " "
                        << tmp_value[2];
                // NHWC -> NCHW
                value[1] = tmp_value[3];
                value[2] = tmp_value[1];
                value[3] = tmp_value[2];
              }
              return value;
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
            } else if (self.Var().IsType<phi::SelectedRows>()) {
              return phi::vectorize<int>(
                  self.Var().Get<phi::SelectedRows>().value().dims());
            } else if (self.Var().IsType<framework::Strings>()) {
              return std::vector<int>{static_cast<int>(
                  self.Var().Get<framework::Strings>().size())};
            } else if (self.Var().IsType<framework::Vocab>()) {
              return std::vector<int>{
                  static_cast<int>(self.Var().Get<framework::Vocab>().size())};
            } else {
              VLOG(2) << "It is meaningless to get shape of "
                         "variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
2106 2107 2108 2109 2110 2111 2112 2113 2114
      .def_property_readonly(
          "layout",
          [](imperative::VarBase &self) {
            if (self.Var().IsType<framework::LoDTensor>()) {
              auto layout = self.Var().Get<framework::LoDTensor>().layout();
              return paddle::framework::DataLayoutToString(layout);
            }
            return std::string("");
          })
2115 2116
      .def_property_readonly("is_leaf",
                             &imperative::VarBase::IsLeaf,
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
                             R"DOC(
      Whether a Tensor is leaf Tensor.

      For the Tensor whose stop_gradient is ``True`` , it will be leaf Tensor. 
      
      For the Tensor whose stop_gradient is ``False`` , it will be leaf Tensor too if it is created by user.

      Returns:
          bool: Whether a Tensor is leaf Tensor.

      Examples:
          .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.)
              print(x.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=True)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=False)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # False
       )DOC")
2145
      .def_property_readonly(
2146 2147
          "place",
          [](imperative::VarBase &self) { return self.Place(); },
2148
          py::return_value_policy::copy)
2149 2150 2151 2152 2153 2154
      .def_property_readonly("_place_str",
                             [](imperative::VarBase &self) {
                               std::stringstream ostr;
                               ostr << self.Place();
                               return ostr.str();
                             })
J
Jiabin Yang 已提交
2155
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
2156
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
2157

2158 2159 2160 2161 2162
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

L
Leo Chen 已提交
2163 2164 2165 2166 2167 2168 2169
  py::enum_<paddle::imperative::AmpLevel>(m, "AmpLevel", py::arithmetic())
      .value("O0", paddle::imperative::AmpLevel::O0)
      .value("O1", paddle::imperative::AmpLevel::O1)
      .value("O2", paddle::imperative::AmpLevel::O2)
      .value("O3", paddle::imperative::AmpLevel::O3)
      .export_values();

2170
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
2171
      m, "Tracer", R"DOC()DOC")
2172
      .def("__init__",
J
Jiabin Yang 已提交
2173
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
2174 2175 2176
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
2177 2178
      .def_property("_amp_level",
                    &imperative::Tracer::GetAmpLevel,
L
Leo Chen 已提交
2179
                    &imperative::Tracer::SetAmpLevel)
2180 2181
      .def_property("_amp_dtype",
                    &imperative::Tracer::GetAmpDtype,
2182
                    &imperative::Tracer::SetAmpDtype)
2183 2184
      .def_property("_has_grad",
                    &imperative::Tracer::HasGrad,
2185
                    &imperative::Tracer::SetHasGrad)
2186 2187 2188 2189 2190 2191 2192 2193
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
2194
              self.SetExpectedPlace(*p);
2195 2196
              // TODO(jiabin): Support eager here when we need to make all
              // dygraph in eager mode
2197 2198
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2199 2200 2201
            } else if (py::isinstance<platform::XPUPlace>(obj)) {
              auto p = obj.cast<platform::XPUPlace *>();
              self.SetExpectedPlace(*p);
2202 2203
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2204 2205
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
2206
              self.SetExpectedPlace(*p);
2207 2208
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2209 2210
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
2211
              self.SetExpectedPlace(*p);
2212 2213
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2214 2215 2216 2217 2218
            } else if (py::isinstance<platform::NPUPlace>(obj)) {
              auto p = obj.cast<platform::NPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2219 2220 2221 2222 2223
            } else if (py::isinstance<platform::IPUPlace>(obj)) {
              auto p = obj.cast<platform::IPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
F
fwenguang 已提交
2224 2225 2226 2227 2228
            } else if (py::isinstance<platform::MLUPlace>(obj)) {
              auto p = obj.cast<platform::MLUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2229 2230 2231 2232 2233
            } else if (py::isinstance<platform::CustomPlace>(obj)) {
              auto p = obj.cast<platform::CustomPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2234 2235 2236 2237 2238
            } else if (py::isinstance<platform::Place>(obj)) {
              auto p = obj.cast<platform::Place *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2239
            } else {
L
Leo Chen 已提交
2240
              PADDLE_THROW(platform::errors::InvalidArgument(
2241
                  "Incompatible Place Type: supports XPUPlace, CUDAPlace, "
2242
                  "CPUPlace, NPUPlace, IPUPlace, MLUPlace"
L
Leo Chen 已提交
2243 2244
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
2245 2246
            }
          })
2247 2248 2249
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
2250 2251
      .def("_generate_unique_name",
           &imperative::Tracer::GenerateUniqueName,
2252
           py::arg("key") = "dygraph_tmp")
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
      .def("_set_amp_op_list",
           [](imperative::Tracer &self,
              std::unordered_set<std::string> &allow_ops,
              std::unordered_set<std::string> &block_ops) {
             // NOTE(zhiqiu): The automatic conversion in pybind11 between
             // c++
             // STL and python set/list/dict involve a copy operation that
             // prevents pass-by-reference semantics, so it is ok to swap.
             // The reaseon why not directly pass
             // std::shared_ptr<std::unordered_set<std::string>>
             // is that pybind11 forbid shared_ptr<T> where T is not custom
             // type.
             imperative::AmpOperators::Instance().GetMutableAllowOps()->swap(
                 allow_ops);
             imperative::AmpOperators::Instance().GetMutableBlockOps()->swap(
                 block_ops);
2269
             VLOG(5) << "AMP operators changed, "
2270 2271
                     << imperative::AmpOperators::Instance();
           })
2272 2273 2274
      .def("_get_amp_op_list",
           [](imperative::Tracer &self) {
             return std::make_tuple(
2275 2276
                 *(imperative::AmpOperators::Instance().GetMutableAllowOps()),
                 *(imperative::AmpOperators::Instance().GetMutableBlockOps()));
2277
           })
C
Chen Weihang 已提交
2278
      .def("_get_kernel_signature",
2279 2280 2281 2282
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
C
Chen Weihang 已提交
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
              framework::AttributeMap attrs) {
             // TODO(xiongkun): move this function outside of tracer.
             auto ins_map = ConvertToNameTensorMap(ins);
             auto outs_map = ConvertToNameTensorMap(outs);
             {
               auto input_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto output_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto attr_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
2300 2301
               auto ret = self.GetExpectedKernelSignature(
                   type, ins_map, outs_map, attrs);
C
Chen Weihang 已提交
2302 2303 2304
               auto kernelsig_ins = input_to_vector(ret.input_names);
               auto kernelsig_attrs = attr_to_vector(ret.attr_names);
               auto kernelsig_outs = output_to_vector(ret.output_names);
2305 2306
               return std::make_tuple(
                   kernelsig_ins, kernelsig_attrs, kernelsig_outs);
C
Chen Weihang 已提交
2307 2308
             }
           })
2309
      .def("trace",
2310 2311 2312 2313 2314 2315
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CustomPlace &place,
2316 2317 2318 2319 2320 2321
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2322 2323 2324 2325 2326 2327 2328
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2329 2330
             }
           })
2331
      .def("trace",
2332 2333 2334 2335 2336 2337
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::XPUPlace &place,
Z
zyfncg 已提交
2338 2339
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2340 2341 2342 2343
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2344 2345 2346 2347 2348 2349 2350
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2351 2352
             }
           })
M
minqiyang 已提交
2353
      .def("trace",
2354 2355 2356 2357 2358 2359
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CUDAPlace &place,
Z
zyfncg 已提交
2360 2361
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2362 2363
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
2364 2365
             {
               py::gil_scoped_release release;
2366 2367 2368 2369 2370 2371 2372
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2373
             }
M
minqiyang 已提交
2374
           })
2375
      .def("trace",
2376 2377 2378 2379 2380 2381
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::NPUPlace &place,
Z
zyfncg 已提交
2382 2383
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2384
             auto ins_map = ConvertToNameVarBaseMap(ins);
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
             }
           })
      .def("trace",
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::IPUPlace &place,
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
2407 2408 2409
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2410 2411 2412 2413 2414 2415 2416
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2417 2418
             }
           })
F
fwenguang 已提交
2419
      .def("trace",
2420 2421 2422 2423 2424 2425
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::MLUPlace &place,
Z
zyfncg 已提交
2426 2427
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
F
fwenguang 已提交
2428 2429 2430 2431
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2432 2433 2434 2435 2436 2437 2438
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
F
fwenguang 已提交
2439 2440
             }
           })
J
Jiabin Yang 已提交
2441
      .def("trace",
2442 2443 2444 2445 2446 2447
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CPUPlace &place,
Z
zyfncg 已提交
2448 2449
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2450 2451 2452 2453
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2454 2455 2456 2457 2458 2459 2460
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
J
Jiabin Yang 已提交
2461 2462
             }
           });
2463 2464

  // define parallel context
2465 2466 2467
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
2468 2469
      .def_property(
          "nranks",
2470 2471
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
2472 2473
            self.nranks_ = nranks;
          })
2474 2475 2476 2477 2478 2479 2480 2481
      .def_property(
          "local_rank",
          [](const imperative::ParallelStrategy &self) {
            return self.local_rank_;
          },
          [](imperative::ParallelStrategy &self, int local_rank) {
            self.local_rank_ = local_rank;
          })
2482 2483
      .def_property(
          "trainer_endpoints",
2484
          [](const imperative::ParallelStrategy &self) {
2485 2486
            return self.trainer_endpoints_;
          },
2487
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
2488 2489
            self.trainer_endpoints_ = eps;
          })
2490 2491 2492 2493 2494 2495 2496 2497
      .def_property(
          "current_endpoint",
          [](const imperative::ParallelStrategy &self) {
            return self.current_endpoint_;
          },
          [](imperative::ParallelStrategy &self, const std::string &ep) {
            self.current_endpoint_ = ep;
          })
2498 2499 2500 2501 2502 2503
      .def_property(
          "nrings",
          [](const imperative::ParallelStrategy &self) { return self.nrings_; },
          [](imperative::ParallelStrategy &self, int nrings) {
            self.nrings_ = nrings;
          });
2504

2505 2506 2507 2508
  m.def("varbase_copy", &VarBaseCopy<platform::Place>);
  m.def("varbase_copy", &VarBaseCopy<platform::CPUPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::XPUPlace>);
2509
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPinnedPlace>);
2510
  m.def("varbase_copy", &VarBaseCopy<platform::NPUPlace>);
R
ronnywang 已提交
2511
  m.def("varbase_copy", &VarBaseCopy<platform::CustomPlace>);
F
fwenguang 已提交
2512
  m.def("varbase_copy", &VarBaseCopy<platform::MLUPlace>);
2513

2514 2515 2516 2517 2518 2519 2520
  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
         const platform::Place &place,
         bool create_graph,
         bool retain_graph,
         bool allow_unused,
         bool only_inputs) {
        imperative::PartialGradEngine engine(input_targets,
                                             output_targets,
                                             output_grads,
                                             no_grad_vars,
                                             place,
                                             create_graph,
                                             retain_graph,
                                             allow_unused,
                                             only_inputs);
2535 2536 2537 2538 2539
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

2540 2541 2542 2543
  m.def(
      "dygraph_run_backward",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &tensors,
         const std::vector<std::shared_ptr<imperative::VarBase>> &grad_tensors,
2544 2545
         bool retain_graph,
         const imperative::Tracer &tracer) {
2546 2547 2548 2549 2550 2551 2552 2553
        auto *engine = tracer.GetEngine();
        engine->Init(tensors, grad_tensors, retain_graph);
        VLOG(3) << "Start backward";
        engine->Execute();
        VLOG(3) << "Finish backward";
      },
      py::call_guard<py::gil_scoped_release>());

2554 2555 2556
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) ||          \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_ASCEND_CL) || \
    defined(PADDLE_WITH_GLOO) || defined(PADDLE_WITH_CNCL)
2557 2558 2559 2560 2561 2562
  py::class_<imperative::ParallelContext,
             std::shared_ptr<imperative::ParallelContext>>(m,
                                                           "ParallelContext");

  py::class_<imperative::Reducer, std::shared_ptr<imperative::Reducer>>(
      m, "Reducer", R"DOC()DOC")
S
ShenLiang 已提交
2563 2564 2565 2566
      .def(py::init<const std::vector<std::shared_ptr<imperative::VarBase>> &,
                    const std::vector<std::vector<size_t>> &,
                    const std::vector<bool> &,
                    std::shared_ptr<imperative::ParallelContext>,
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
                    const std::vector<size_t> &,
                    bool>())
      .def("prepare_for_backward",
           &imperative::Reducer::PrepareForBackward,
           py::arg("vars"),
           py::call_guard<py::gil_scoped_release>());

  m.def("assign_group_by_size",
        &imperative::AssignGroupBySize,
        py::arg("vars"),
2577 2578
        py::arg("is_sparse_gradient"),
        py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
2579
        py::arg("tensor_indices") = std::vector<int64_t>{},
2580
        py::call_guard<py::gil_scoped_release>());
2581
#endif
2582

2583
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
2584 2585
  py::class_<imperative::NCCLParallelContext,
             imperative::ParallelContext,
2586 2587 2588 2589
             std::shared_ptr<imperative::NCCLParallelContext>>(
      m, "NCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
K
kuizhiqing 已提交
2590 2591 2592 2593
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::NCCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2594 2595 2596
#endif

#if defined(PADDLE_WITH_XPU_BKCL)
2597 2598
  py::class_<imperative::BKCLParallelContext,
             imperative::ParallelContext,
2599 2600 2601 2602
             std::shared_ptr<imperative::BKCLParallelContext>>(
      m, "BKCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::XPUPlace &>())
K
kuizhiqing 已提交
2603 2604 2605 2606
      .def("init", [](imperative::BKCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::BKCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2607
#endif
2608 2609 2610

#if defined(PADDLE_WITH_GLOO)
  // xiongkun
2611 2612
  py::class_<imperative::GLOOParallelContext,
             imperative::ParallelContext,
2613 2614 2615 2616 2617 2618 2619
             std::shared_ptr<imperative::GLOOParallelContext>>(
      m, "GLOOParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CPUPlace &>())
      .def("init", [](imperative::GLOOParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::GLOOParallelContext::InitWithRingID,
2620 2621 2622 2623
           py::arg("ring_id"));
#endif

#if defined(PADDLE_WITH_ASCEND_CL)
2624 2625
  py::class_<imperative::HCCLParallelContext,
             imperative::ParallelContext,
2626 2627 2628 2629 2630 2631 2632
             std::shared_ptr<imperative::HCCLParallelContext>>(
      m, "HCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::NPUPlace &>())
      .def("init", [](imperative::HCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::HCCLParallelContext::InitWithRingID,
2633 2634 2635
           py::arg("ring_id"));
#endif

2636
#if defined(PADDLE_WITH_CNCL)
2637 2638
  py::class_<imperative::CNCLParallelContext,
             imperative::ParallelContext,
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
             std::shared_ptr<imperative::CNCLParallelContext>>(
      m, "CNCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::MLUPlace &>())
      .def("init", [](imperative::CNCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::CNCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
#endif

K
kuizhiqing 已提交
2649 2650
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_ASCEND_CL)
2651 2652
  py::class_<imperative::HeterParallelContext,
             imperative::ParallelContext,
K
kuizhiqing 已提交
2653 2654 2655 2656 2657 2658
             std::shared_ptr<imperative::HeterParallelContext>>(
      m, "HeterParallelContext")
      .def(py::init<const imperative::ParallelStrategy &, const int &>())
      .def("init", [](imperative::HeterParallelContext &self) { self.Init(); });
#endif

2659
  m.def("pylayer_apply",
2660 2661 2662 2663
        [](const platform::CPUPlace &place,
           const py::object &cls,
           const py::args args,
           const py::kwargs kwargs) {
2664 2665 2666 2667
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });

  m.def("pylayer_apply",
2668 2669 2670 2671
        [](const platform::CUDAPlace &place,
           const py::object &cls,
           const py::args args,
           const py::kwargs kwargs) {
2672 2673 2674 2675
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });

  m.def("pylayer_apply",
2676 2677 2678 2679
        [](const platform::XPUPlace &place,
           const py::object &cls,
           const py::args args,
           const py::kwargs kwargs) {
2680 2681 2682 2683
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });

  m.def("pylayer_apply",
2684 2685 2686 2687
        [](const platform::CUDAPinnedPlace &place,
           const py::object &cls,
           const py::args args,
           const py::kwargs kwargs) {
2688 2689
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
2690 2691

  m.def("pylayer_apply",
2692 2693 2694 2695
        [](const platform::NPUPlace &place,
           const py::object &cls,
           const py::args args,
           const py::kwargs kwargs) {
2696 2697
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
F
fwenguang 已提交
2698
  m.def("pylayer_apply",
2699 2700 2701 2702
        [](const platform::MLUPlace &place,
           const py::object &cls,
           const py::args args,
           const py::kwargs kwargs) {
F
fwenguang 已提交
2703 2704
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
R
ronnywang 已提交
2705
  m.def("pylayer_apply",
2706 2707 2708 2709
        [](const platform::CustomPlace &place,
           const py::object &cls,
           const py::args args,
           const py::kwargs kwargs) {
R
ronnywang 已提交
2710 2711
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
2712

S
Siming Dai 已提交
2713
#if defined(PADDLE_WITH_CUDA)
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
  m.def(
      "to_uva_tensor",
      [](const py::object &obj, int device_id) {
        const auto &tracer = imperative::GetCurrentTracer();
        auto new_tensor = std::shared_ptr<imperative::VarBase>(
            new imperative::VarBase(tracer->GenerateUniqueName()));
        auto array = obj.cast<py::array>();
        if (py::isinstance<py::array_t<int32_t>>(array)) {
          SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int64_t>>(array)) {
          SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<float>>(array)) {
          SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<double>>(array)) {
          SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int8_t>>(array)) {
          SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int16_t>>(array)) {
          SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<paddle::platform::float16>>(
                       array)) {
2735 2736
          SetUVATensorFromPyArray<paddle::platform::float16>(
              new_tensor, array, device_id);
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
        } else if (py::isinstance<py::array_t<bool>>(array)) {
          SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
        } else {
          // obj may be any type, obj.cast<py::array>() may be failed,
          // then the array.dtype will be string of unknown meaning.
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Input object type error or incompatible array data type. "
              "tensor.set() supports array with bool, float16, float32, "
              "float64, int8, int16, int32, int64,"
              "please check your input or input array data type."));
        }
        return new_tensor;
      },
2750 2751 2752 2753
      py::arg("obj"),
      py::arg("device_id") = 0,
      py::return_value_policy::reference,
      R"DOC(
S
Siming Dai 已提交
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
  Returns tensor with the UVA(unified virtual addressing) created from numpy array.

  Args:
      obj(numpy.ndarray): The input numpy array, supporting bool, float16, float32,
                          float64, int8, int16, int32, int64 dtype currently.

      device_id(int, optional): The destination GPU device id.
                                Default: 0, means current device.

  Returns:

      new_tensor(paddle.Tensor): Return the UVA Tensor with the sample dtype and 
                                 shape with the input numpy array.

  Examples:
      .. code-block:: python

        # required: gpu
        import numpy as np
        import paddle
        
        data = np.random.randint(10, size=(3, 4))
        tensor = paddle.fluid.core.to_uva_tensor(data)
        print(tensor)
)DOC");

#endif

2782 2783 2784
#if defined(PADDLE_WITH_CUDA)
  m.def(
      "async_write",
2785 2786 2787 2788
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
2789
        PADDLE_ENFORCE_EQ(
2790 2791
            platform::is_gpu_place(src.Place()),
            true,
2792 2793 2794 2795
            platform::errors::InvalidArgument(
                "Required `src` device should be CUDAPlace, but received %d. ",
                src.Place()));
        PADDLE_ENFORCE_EQ(
2796 2797
            platform::is_cuda_pinned_place(dst.Place()),
            true,
2798 2799 2800 2801 2802
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPinnedPlace, "
                "but received %d. ",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2803 2804
            platform::is_cpu_place(offset.Place()),
            true,
2805 2806 2807 2808
            platform::errors::InvalidArgument("Required `offset` device should "
                                              "be CPUPlace, but received %d. ",
                                              offset.Place()));
        PADDLE_ENFORCE_EQ(
2809 2810
            platform::is_cpu_place(count.Place()),
            true,
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d. ",
                count.Place()));

        // TODO(daisiming): In future, add index as arguments following
        // async_read.
        auto &src_tensor = src.Var().Get<framework::LoDTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<framework::LoDTensor>();
        auto &offset_tensor = offset.Var().Get<framework::LoDTensor>();
        auto &count_tensor = count.Var().Get<framework::LoDTensor>();
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2823 2824
        PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                          1,
2825 2826
                          platform::errors::InvalidArgument(
                              "`offset` tensor should be one-dimensional."));
2827 2828
        PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                          1,
2829 2830
                          platform::errors::InvalidArgument(
                              "`count` tensor should be one-dimensional."));
2831 2832
        PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                          count_tensor.numel(),
2833 2834 2835
                          platform::errors::InvalidArgument(
                              "`offset` and `count` tensor size dismatch."));
        PADDLE_ENFORCE_EQ(
2836 2837
            src_tensor.dims().size(),
            dst_tensor->dims().size(),
2838 2839 2840 2841 2842
            platform::errors::InvalidArgument(
                "`src` and `dst` should have the same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2843 2844
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2845 2846 2847 2848 2849
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
        }

L
Leo Chen 已提交
2850 2851
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2852 2853 2854 2855 2856 2857 2858 2859 2860

        int64_t size = src_tensor.numel() / src_tensor.dims()[0];
        auto *src_data = src_tensor.data<float>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const int64_t *offset_data = offset_tensor.data<int64_t>();
        const int64_t *count_data = count_tensor.data<int64_t>();
        int64_t src_offset = 0, dst_offset, c;
        for (int64_t i = 0; i < offset_tensor.numel(); i++) {
          dst_offset = offset_data[i], c = count_data[i];
2861 2862
          PADDLE_ENFORCE_LE(src_offset + c,
                            src_tensor.dims()[0],
2863 2864
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2865 2866
          PADDLE_ENFORCE_LE(dst_offset + c,
                            dst_tensor->dims()[0],
2867 2868
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2869 2870 2871 2872 2873
          cudaMemcpyAsync(dst_data + (dst_offset * size),
                          src_data + (src_offset * size),
                          c * size * sizeof(float),
                          cudaMemcpyDeviceToHost,
                          stream);
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
          src_offset += c;
        }
      },
      R"DOC(
  This api provides a way to write pieces of source tensor to destination tensor 
  inplacely and asynchronously. In which, we use `offset` and `count` to determine 
  where to copy. `offset` means the begin points of the copy pieces of `src`, and 
  `count` means the lengths of the copy pieces of `src`. To be noted, the copy process 
  will run asynchronously from cuda to pin memory. We can simply remember this as 
  "gpu async_write to pin_memory".
  
  Arguments:
  
    src (Tensor): The source tensor, and the data type should be `float32` currently. 
                  Besides, `src` should be placed on CUDAPlace.

    dst (Tensor): The destination tensor, and the data type should be `float32` currently. 
                  Besides, `dst` should be placed on CUDAPinnedPlace. The shape of `dst` 
                  should be the same with `src` except for the first dimension. 

    offset (Tensor): The offset tensor, and the data type should be `int64` currently. 
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset` 
                     should be one-dimensional. 
    
    count (Tensor): The count tensor, and the data type should be `int64` currently. 
                    Besides, `count` should be placed on CPUPlace. The shape of `count` 
                    should be one-dimensinal. 

  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core  
          from paddle.device import cuda
          
          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50])
              dst = paddle.emtpy(shape=[200, 50, 50]).pin_memory()
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())

              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_write(src, dst, offset, count)

              offset_a = paddle.gather(dst, paddle.to_tensor(np.arange(0, 40)))
              offset_b = paddle.gather(dst, paddle.to_tensor(np.arange(60, 120)))
              offset_array = paddle.concat([offset_a, offset_b], axis=0)
              print(np.allclose(src.numpy(), offset_array.numpy())) # True
)DOC");

  m.def(
      "async_read",
2930 2931 2932 2933 2934 2935 2936 2937
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &index,
         imperative::VarBase &buffer,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
        PADDLE_ENFORCE_EQ(platform::is_cuda_pinned_place(src.Place()),
                          true,
2938 2939 2940 2941 2942
                          platform::errors::InvalidArgument(
                              "Required `src` device should be "
                              "CUDAPinnedPlace, but received %d.",
                              src.Place()));
        PADDLE_ENFORCE_EQ(
2943 2944
            platform::is_gpu_place(dst.Place()),
            true,
2945 2946 2947 2948
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPlace, but received %d.",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2949 2950
            platform::is_cpu_place(index.Place()),
            true,
2951 2952 2953 2954
            platform::errors::InvalidArgument(
                "Required `index` device should be CPUPlace, but received %d.",
                index.Place()));
        PADDLE_ENFORCE_EQ(
2955 2956
            platform::is_cuda_pinned_place(buffer.Place()),
            true,
2957 2958 2959 2960 2961
            platform::errors::InvalidArgument(
                "Required `buffer` device should be CUDAPinnedPlace, "
                "but received %d.",
                buffer.Place()));
        PADDLE_ENFORCE_EQ(
2962 2963
            platform::is_cpu_place(offset.Place()),
            true,
2964 2965 2966 2967
            platform::errors::InvalidArgument(
                "Required `offset` device should be CPUPlace, but received %d.",
                offset.Place()));
        PADDLE_ENFORCE_EQ(
2968 2969
            platform::is_cpu_place(count.Place()),
            true,
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d.",
                count.Place()));

        auto &src_tensor = src.Var().Get<framework::LoDTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<framework::LoDTensor>();
        auto &index_tensor = index.Var().Get<framework::LoDTensor>();
        auto *buffer_tensor =
            buffer.MutableVar()->GetMutable<framework::LoDTensor>();
        auto &offset_tensor = offset.Var().Get<framework::LoDTensor>();
        auto &count_tensor = count.Var().Get<framework::LoDTensor>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2984 2985
        PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                          dst_tensor->dims().size(),
2986 2987 2988 2989
                          platform::errors::InvalidArgument(
                              "`src` and `dst` should have same tensor shape, "
                              "except for the first dimension."));
        PADDLE_ENFORCE_EQ(
2990 2991
            src_tensor.dims().size(),
            buffer_tensor->dims().size(),
2992 2993 2994 2995 2996
            platform::errors::InvalidArgument(
                "`src` and `buffer` should have same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2997 2998
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2999 3000 3001 3002
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
          PADDLE_ENFORCE_EQ(
3003 3004
              src_tensor.dims()[i],
              buffer_tensor->dims()[i],
3005 3006 3007 3008
              platform::errors::InvalidArgument(
                  "`src` and `buffer` should have the same tensor shape, "
                  "except for the first dimension."));
        }
3009 3010
        PADDLE_ENFORCE_EQ(index_tensor.dims().size(),
                          1,
3011 3012 3013
                          platform::errors::InvalidArgument(
                              "`index` tensor should be one-dimensional."));

L
Leo Chen 已提交
3014 3015
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
3016 3017 3018 3019 3020 3021

        int64_t numel = 0;  // total copy length
        int64_t copy_flag = offset_tensor.dims()[0];
        int64_t size = src_tensor.numel() / src_tensor.dims()[0];

        if (copy_flag != 0) {
3022 3023
          PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                            1,
3024 3025
                            platform::errors::InvalidArgument(
                                "`offset` tensor should be one-dimensional."));
3026 3027
          PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                            1,
3028 3029
                            platform::errors::InvalidArgument(
                                "`count` tensor should be one-dimensional."));
3030 3031
          PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                            count_tensor.numel(),
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
                            platform::errors::InvalidArgument(
                                "`offset` and `count` tensor size dismatch."));
          auto *offset_data = offset_tensor.data<int64_t>();
          auto *count_data = count_tensor.data<int64_t>();
          for (int64_t i = 0; i < count_tensor.numel(); i++) {
            numel += count_data[i];
          }
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            buffer_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
3043 3044
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            dst_tensor->dims()[0],
3045 3046 3047 3048 3049 3050 3051
                            platform::errors::InvalidArgument(
                                "Target tensor size is too small."));

          int64_t src_offset, dst_offset = 0, c;
          auto *src_data = src_tensor.data<float>();
          for (int64_t i = 0; i < offset_tensor.numel(); i++) {
            src_offset = offset_data[i], c = count_data[i];
3052 3053
            PADDLE_ENFORCE_LE(src_offset + c,
                              src_tensor.dims()[0],
3054 3055
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
3056 3057
            PADDLE_ENFORCE_LE(dst_offset + c,
                              dst_tensor->dims()[0],
3058 3059
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
3060 3061 3062 3063 3064
            cudaMemcpyAsync(dst_data + (dst_offset * size),
                            src_data + (src_offset * size),
                            c * size * sizeof(float),
                            cudaMemcpyHostToDevice,
                            stream);
3065 3066 3067
            dst_offset += c;
          }
        } else {
3068 3069
          PADDLE_ENFORCE_LE(index_tensor.numel(),
                            buffer_tensor->dims()[0],
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
        }

        // Select the index data to the buffer
        auto index_select = [](const framework::Tensor &src_tensor,
                               const framework::Tensor &index_tensor,
                               framework::Tensor *buffer_tensor) {
          auto *src_data = src_tensor.data<float>();
          auto *index_data = index_tensor.data<int64_t>();
          auto *buffer_data =
              buffer_tensor->mutable_data<float>(buffer_tensor->place());
          const int &slice_size = src_tensor.numel() / src_tensor.dims()[0];
          const int &copy_bytes = slice_size * sizeof(float);
          int64_t c = 0;
          for (int64_t i = 0; i < index_tensor.numel(); i++) {
            std::memcpy(buffer_data + c * slice_size,
3087 3088
                        src_data + index_data[i] * slice_size,
                        copy_bytes);
3089 3090 3091 3092 3093 3094
            c += 1;
          }
        };
        index_select(src_tensor, index_tensor, buffer_tensor);

        // Copy the data to device memory
3095 3096
        cudaMemcpyAsync(dst_data + (numel * size),
                        buffer_tensor->data<float>(),
3097
                        index_tensor.numel() * size * sizeof(float),
3098 3099
                        cudaMemcpyHostToDevice,
                        stream);
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
      },
      R"DOC(
  This api provides a way to read from pieces of source tensor to destination tensor 
  asynchronously. In which, we use `index`, `offset` and `count` to determine where 
  to read. `index` means the index position of src tensor we want to read. `offset` 
  and count means the begin points and length of pieces of src tensor we want to read. 
  To be noted, the copy process will run asynchronously from pin memory to cuda place. 
  We can simply remember this as "cuda async_read from pin_memory".

  Arguments:
  
    src (Tensor): The source tensor, and the data type should be `float32` currently. 
                  Besides, `src` should be placed on CUDAPinnedPlace.
  
    dst (Tensor): The destination tensor, and the data type should be `float32` currently. 
                  Besides, `dst` should be placed on CUDAPlace. The shape of `dst` should 
                  be the same with `src` except for the first dimension.

    index (Tensor): The index tensor, and the data type should be `int64` currently. 
                    Besides, `index` should be on CPUplace. The shape of `index` should 
                    be one-dimensional.

    buffer (Tensor): The buffer tensor, used to buffer index copy tensor temporarily. 
                     The data type should be `float32` currently, and should be placed 
                     on CUDAPinnedPlace. The shape of `buffer` should be the same with `src` except for the first dimension.

    offset (Tensor): The offset tensor, and the data type should be `int64` currently. 
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset` 
                     should be one-dimensional.

    count (Tensor): The count tensor, and the data type should be `int64` currently. 
                    Besides, `count` should be placed on CPUPlace. The shape of `count` 
                    should be one-dimensinal.
    
  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core
          from paddle.device import cuda

          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50], dtype="float32").pin_memory()
              dst = paddle.empty(shape=[100, 50, 50], dtype="float32")
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())
              buffer = paddle.empty(shape=[50, 50, 50], dtype="float32").pin_memory()
              index = paddle.to_tensor(
                  np.array([1, 3, 5, 7, 9], dtype="int64")).cpu()
          
              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_read(src, dst, index, buffer, offset, count)
 
)DOC");
#endif
3159 3160 3161 3162
}

}  // namespace pybind
}  // namespace paddle