index_add_kernel.cu 4.3 KB
Newer Older
L
Li Min 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/index_add_kernel.h"

#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/utils/data_type.h"

namespace phi {

using paddle::platform::PADDLE_CUDA_NUM_THREADS;

template <typename T, typename IndexT>
__global__ void index_add_cuda_kernel(const T* input,
                                      const IndexT* index,
                                      const T* add_value,
                                      int64_t N,
                                      int64_t stride,
                                      int64_t size,
                                      int64_t delta,
                                      T* output) {
  CUDA_KERNEL_LOOP_TYPE(idx, N, int64_t) {
    int64_t pre_idx = idx / (stride * size);
    int64_t dim_idx = idx % (stride * size) / stride;
    IndexT src_dim_idx = index[dim_idx];
    int64_t input_idx =
        idx + (delta * pre_idx + src_dim_idx - dim_idx) * stride;
    paddle::platform::CudaAtomicAdd(&output[input_idx], add_value[idx]);
  }
}

template <typename T, typename Context>
void IndexAddKernel(const Context& ctx,
                    const DenseTensor& x,
                    const DenseTensor& index,
                    const DenseTensor& add_value,
                    int axis,
                    DenseTensor* output) {
  auto input_dim = x.dims();
  auto output_dim = output->dims();
  auto add_value_dim = add_value.dims();
56 57
  const auto& index_type = index.dtype();
  int dim = axis;
L
Li Min 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
  dim = dim >= 0 ? dim : dim + input_dim.size();
  auto stride_dim = phi::stride(input_dim);
  int64_t stride = stride_dim[dim];
  int64_t size = add_value_dim[dim];
  int64_t delta = input_dim[dim] - size;

  auto* in_data = x.data<T>();
  T* out_data = ctx.template Alloc<T>(output);
  auto* add_value_data = add_value.data<T>();

  int64_t numel = add_value.numel();
  if (numel == 0) {
    return;
  }
  auto stream = ctx.stream();

  unsigned int block_dim = PADDLE_CUDA_NUM_THREADS;
  dim3 grid_dim = dim3((numel + block_dim - 1) / block_dim);
  paddle::platform::LimitGridDim(ctx, &grid_dim);

  // copy input to output.
  // todo(@limin29): inplace do not need copy.
  phi::Copy(ctx, x, ctx.GetPlace(), false, output);

  if (index_type == phi::DataType::INT64) {
    const int64_t* index_data = index.data<int64_t>();
    index_add_cuda_kernel<T, int64_t>
        <<<grid_dim, block_dim, 0, stream>>>(in_data,
                                             index_data,
                                             add_value_data,
                                             numel,
                                             stride,
                                             size,
                                             delta,
                                             out_data);
  } else {
    const int* index_data = index.data<int>();
    index_add_cuda_kernel<T, int>
        <<<grid_dim, block_dim, 0, stream>>>(in_data,
                                             index_data,
                                             add_value_data,
                                             numel,
                                             stride,
                                             size,
                                             delta,
                                             out_data);
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(index_add,
                   GPU,
                   ALL_LAYOUT,
                   phi::IndexAddKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   int,
                   int64_t) {}