elementwise_sub_op.cc 5.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_sub_op.h"
16 17
#include <memory>
#include <string>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
19 20 21 22

namespace paddle {
namespace operators {

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
template <typename T>
struct SameDimsElemwiseSub<
    platform::CPUDeviceContext, T,
    typename std::enable_if<std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    blas.VSUB(x->numel(), x->data<T>(), y->data<T>(), z->data<T>());
  }
};

template <typename T>
struct SameDimsElemwiseSub<
    platform::CPUDeviceContext, T,
    typename std::enable_if<!std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto eigen_x = framework::EigenVector<T>::Flatten(*x);
    auto eigen_y = framework::EigenVector<T>::Flatten(*y);
    auto eigen_z = framework::EigenVector<T>::Flatten(*z);
    auto &place = *ctx.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
    eigen_z.device(place) = eigen_x - eigen_y;
  }
};
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
class ElementwiseSubOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Sub"; }
  std::string GetEquation() const override { return "Out = X - Y"; }

  void AddInputX() override {
    AddInput("X",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  void AddInputY() override {
    AddInput("Y",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  std::string GetOpFuntionality() const override {
    return "Substract two tensors element-wise";
  }
};

H
hong 已提交
72 73
template <typename T>
class ElementwiseSubDoubleGradMaker : public framework::SingleGradOpMaker<T> {
74
 public:
H
hong 已提交
75
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
76 77

 protected:
78
  void Apply(GradOpPtr<T> op) const override {
79
    op->SetType("elementwise_sub_grad_grad");
H
hong 已提交
80 81 82 83
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
84

H
hong 已提交
85
    op->SetAttrMap(this->Attrs());
86

H
hong 已提交
87
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
88 89 90 91 92 93
  }
};

}  // namespace operators
}  // namespace paddle

94
REGISTER_ELEMWISE_GRAD_MAKER(elementwise_sub, Sub);
95
REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(elementwise_sub, Sub);
96

97 98
namespace ops = paddle::operators;

H
hong 已提交
99
REGISTER_OPERATOR(
100 101
    elementwise_sub_grad, ops::ElementwiseOpGrad,
    ops::ElementwiseGradOpInplaceInferer, ops::ElementwiseGradNoBufVarsInferer,
H
hong 已提交
102 103
    ops::ElementwiseSubDoubleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseSubDoubleGradMaker<paddle::imperative::OpBase>);
104
REGISTER_OPERATOR(elementwise_sub_grad_grad,
105
                  ops::ElementwiseOpDoubleGradWithoutDXDY,
106 107
                  ops::ElementwiseDoubleGradOpInplaceInferer,
                  ops::ElementwiseDoubleGradNoBufVarsInferer);
108

G
gongweibao 已提交
109 110
REGISTER_OP_CPU_KERNEL(
    elementwise_sub,
Q
QI JUN 已提交
111 112 113 114
    ops::ElementwiseSubKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseSubKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseSubKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseSubKernel<paddle::platform::CPUDeviceContext, int64_t>);
G
gongweibao 已提交
115 116
REGISTER_OP_CPU_KERNEL(
    elementwise_sub_grad,
Q
QI JUN 已提交
117 118 119 120
    ops::ElementwiseSubGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseSubGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseSubGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseSubGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
121 122 123 124 125 126 127 128 129 130
REGISTER_OP_CPU_KERNEL(
    elementwise_sub_grad_grad,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        float>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        double>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int64_t>);