ProfileFileReader.py 18.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import six
import json
import multiprocessing
from multiprocessing import Process

import paddle.fluid.proto.profiler.profiler_pb2 as profiler_pb2

from CspChromeTraceFormatter import ChromeTraceFormatter

from CspFileReader import FileReader
from CspFileReader import getLogger
from CspFileReader import NETINFO_TRACE_NUM, DCGMINFO_TRACE_NUM, PIPELINEINFO_TRACE_NUM
27
from CspFileReader import FILEORGANIZEFORM_BYRANK
28 29 30


class profileFileReader(FileReader):
31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    def _parseSingleFile(self, profile):
        with open(profile, 'rb') as f:
            profile_s = f.read()
            profile_pb = profiler_pb2.Profile()
            profile_pb.ParseFromString(profile_s)

            return profile_pb

    def _parseTask(self, taskList, q=None):
        profile_dict = {}

        for fileName in taskList:
            rankId = self.getRankId(fileName)
            profile_dict["trainerRank.%03d" %
                         (rankId)] = self._parseSingleFile(fileName)
            self._logger.info("I finish processing %s!" % fileName)

49
        if q is not None:
50 51 52 53 54 55
            q.put(profile_dict)

        return profile_dict

    def _is_forwardBackwardInfo(self, items):
        if items["name"] == "marker/compute/MarkerCUDA":
56
            if "args" in items:
57 58
                if isinstance(items["args"], dict):
                    args = items["args"]
59
                    if "detail_info" in args:
60 61 62 63 64 65 66 67
                        if args["detail_info"] == "marker_forward_B" or \
                           args["detail_info"] == "marker_forward_E" or \
                           args["detail_info"] == "marker_backward_B" or \
                           args["detail_info"] == "marker_backward_E":
                            return True
        return False

    def _allocate_forwardBackwardInfo(self, restList, pid, tid):
68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        def _cmp_ele(items):
            return items["ts"]

        restList.sort(key=_cmp_ele)
        newList = []

        lastEle = {}
        for items in restList:
            if items["args"]["detail_info"].endswith("E"):
                if not lastEle:
                    continue
                else:
                    lastEle["dur"] = items["ts"] - lastEle["ts"]
                    name = lastEle["args"]["detail_info"]
                    name = name[:name.rfind('_')]
                    name = name.split('_')[1]
                    lastEle["name"] = name
                    lastEle["args"]["detail_info"] = name
                    lastEle["args"]["name"] = name
                    if name == "backward":
                        lastEle["cname"] = "good"
                    else:
                        lastEle["cname"] = "bad"

                    lastEle["tid"] = tid
                    lastEle["pid"] = pid

                    newList.append(lastEle)
            else:
                lastEle = items

        return newList

    def _getPipeLineInfo(self, profileList, q=None):

        res = {}
        for profile in profileList:
            rankId = self.getRankId(profile)

            profile_pb = self._parseSingleFile(profile)
            traceEventList = []
            pid = 0
            tid = rankId

            for event in profile_pb.events:
                args = {'name': event.name}
                if event.memcopy.bytes > 0:
                    args['mem_bytes'] = event.memcopy.bytes
                if hasattr(event, "detail_info") and event.detail_info:
                    args['detail_info'] = event.detail_info

                traceEvent = {}
                traceEvent['ph'] = 'X'
                traceEvent['cat'] = 'Op'
                traceEvent['name'] = event.name
                traceEvent['pid'] = pid
                traceEvent['tid'] = tid
                traceEvent['ts'] = self._align_ts(event.start_ns)
                traceEvent['dur'] = (event.end_ns - event.start_ns) / 1.0
                traceEvent['args'] = args

                if self._is_forwardBackwardInfo(traceEvent):
                    traceEventList.append(traceEvent)

133 134
            pipeLineList = self._allocate_forwardBackwardInfo(
                traceEventList, pid, tid)
135 136 137

            res[str(rankId)] = pipeLineList

138
        if q is not None:
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
            q.put(res)

        return res

    def getPipeLineInfo(self, groupId, processNum=8):
        fileFist = self.getFileListByGroup(groupId)

        self._logger.info(
            "using [%d] process to do this work, total task num is %d!" %
            (processNum, len(fileFist)))
        processPool = []
        pidList = []

        manager = multiprocessing.Manager()
        q = manager.Queue()

        taskList = self._splitTaskListForMultiProcess(fileFist, processNum)
        for task in taskList:
157 158 159 160
            subproc = Process(target=self._getPipeLineInfo, args=(
                task,
                q,
            ))
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
            processPool.append(subproc)
            subproc.start()
            pidList.append(subproc.pid)
            self._logger.info(
                "[pipeline info]: process [%d] has been started, total task num is %d ..."
                % (subproc.pid, len(task)))

        for t in processPool:
            t.join()
            pidList.remove(t.pid)
            self._logger.info(
                "[pipeline info]: process [%d] has exited! remained %d process!"
                % (t.pid, len(pidList)))

        pipeLineInfo = {}

        metaInfo = {}
        metaInfo['name'] = 'process_name'
        metaInfo['ph'] = 'M'
        metaInfo['pid'] = 0
        metaInfo['args'] = {
            'name': "%02d_pipeLineInfo" % PIPELINEINFO_TRACE_NUM
        }

        for t in processPool:
            for k, v in q.get().items():
                rankId = int(k)
                gpuId = rankId % self._gpuPerTrainer
                if str(gpuId) not in pipeLineInfo.keys():
                    pipeLineInfo[str(gpuId)] = [metaInfo]
                pipeLineInfo[str(gpuId)].extend(v)

        return pipeLineInfo

    def _allocate_pids(self, profile_dict, gpuId, initPid):
        chrome_trace = ChromeTraceFormatter()
        devices = dict()
        mem_devices = dict()

        initLineNum = initPid + 1
        lineDelta = len(profile_dict.keys())
        i = 0
        for k, profile_pb in six.iteritems(profile_dict):
            lineNum = initLineNum
            for event in profile_pb.events:
                if event.type == profiler_pb2.Event.CPU:
                    if (k, event.device_id, "CPU") not in devices:
                        pid = initPid
                        initPid = initPid + 1
                        devices[(k, event.device_id, "CPU")] = pid
                        # -1 device id represents CUDA API(RunTime) call.(e.g. cudaLaunch, cudaMemcpy)
                        if event.device_id == -1:
213 214
                            chrome_trace.emit_pid(
                                "%02d_%s:cuda_api" % (lineNum, k), pid)
215 216
                            lineNum = lineNum + 1
                        else:
217 218 219
                            chrome_trace.emit_pid(
                                "%02d_%s:cpu:block:%d" %
                                (lineNum, k, event.device_id), pid)
220 221 222 223 224 225 226 227
                            lineNum = lineNum + 1
                elif event.type == profiler_pb2.Event.GPUKernel:
                    if (k, event.device_id, "GPUKernel") not in devices:
                        if gpuId == event.device_id:
                            pid = initPid
                            initPid = initPid + 1

                            devices[(k, event.device_id, "GPUKernel")] = pid
228 229 230
                            chrome_trace.emit_pid(
                                "%02d_%s:gpu:%d" %
                                (lineNum, k, event.device_id), pid)
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
                            lineNum = lineNum + 1

            if not hasattr(profile_pb, "mem_events"):
                continue
            for mevent in profile_pb.mem_events:
                if mevent.place == profiler_pb2.MemEvent.CUDAPlace:
                    if (k, mevent.device_id, "GPU") not in mem_devices:
                        if gpuId == mevent.device_id:
                            pid = initPid
                            initPid = initPid + 1

                            mem_devices[(k, mevent.device_id, "GPU")] = pid
                            chrome_trace.emit_pid(
                                "%02d_memory usage on %s:gpu:%d" %
                                (lineNum, k, mevent.device_id), pid)
                            lineNum = lineNum + 1
                elif mevent.place == profiler_pb2.MemEvent.CPUPlace:
                    if (k, mevent.device_id, "CPU") not in mem_devices:
                        pid = initPid
                        initPid = initPid + 1

                        mem_devices[(k, mevent.device_id, "CPU")] = pid
253 254 255
                        chrome_trace.emit_pid(
                            "%02d_memory usage on %s:cpu:%d" %
                            (lineNum, k, mevent.device_id), pid)
256 257
                        lineNum = lineNum + 1
                elif mevent.place == profiler_pb2.MemEvent.CUDAPinnedPlace:
258 259
                    if (k, mevent.device_id,
                            "CUDAPinnedPlace") not in mem_devices:
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
                        if gpuId == mevent.device_id:
                            pid = initPid
                            initPid = initPid + 1

                            mem_devices[(k, mevent.device_id,
                                         "CUDAPinnedPlace")] = pid
                            chrome_trace.emit_pid(
                                "%02d_memory usage on %s:cudapinnedplace:%d" %
                                (lineNum, k, mevent.device_id), pid)
                            lineNum = lineNum + 1
                if (k, 0, "CPU") not in mem_devices:
                    pid = initPid
                    initPid = initPid + 1

                    mem_devices[(k, 0, "CPU")] = pid
275 276
                    chrome_trace.emit_pid(
                        "%02d_memory usage on %s:cpu:%d" % (lineNum, k, 0), pid)
277 278 279 280 281 282 283
                    lineNum = lineNum + 1
                if (k, 0, "GPU") not in mem_devices:
                    # if gpuId == mevent.device_id:
                    pid = initPid
                    initPid = initPid + 1

                    mem_devices[(k, 0, "GPU")] = pid
284 285
                    chrome_trace.emit_pid(
                        "%02d_memory usage on %s:gpu:%d" % (lineNum, k, 0), pid)
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
                    lineNum = lineNum + 1
                if (k, 0, "CUDAPinnedPlace") not in mem_devices:
                    pid = initPid
                    initPid = initPid + 1

                    mem_devices[(k, 0, "CUDAPinnedPlace")] = pid
                    chrome_trace.emit_pid(
                        "%02d_memory usage on %s:cudapinnedplace:%d" %
                        (lineNum, k, 0), pid)
                    lineNum = lineNum + 1
            i = i + 1
        return chrome_trace, devices, mem_devices

    def _allocate_events(self, profile_dict, devices, gpuId):
        chrome_trace = ChromeTraceFormatter()
        for k, profile_pb in six.iteritems(profile_dict):

            rankId = int(k.split(".")[-1])

            for event in profile_pb.events:
                if event.type == profiler_pb2.Event.CPU:
                    type = "CPU"
                elif event.type == profiler_pb2.Event.GPUKernel:
                    type = "GPUKernel"

                if event.type == profiler_pb2.Event.GPUKernel and event.device_id != gpuId and rankId % self._gpuPerTrainer != gpuId:
                    continue

                pid = devices[(k, event.device_id, type)]
                args = {'name': event.name}
                if event.memcopy.bytes > 0:
                    args['mem_bytes'] = event.memcopy.bytes
                if hasattr(event, "detail_info") and event.detail_info:
                    args['detail_info'] = event.detail_info
                # TODO(panyx0718): Chrome tracing only handles ms. However, some
                # ops takes micro-seconds. Hence, we keep the ns here.
322 323 324 325
                chrome_trace.emit_region(self._align_ts(event.start_ns),
                                         (event.end_ns - event.start_ns) / 1.0,
                                         pid, event.sub_device_id, 'Op',
                                         event.name, args)
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
        return chrome_trace

    def _allocate_memory_event(self, profile_dict, mem_devices, gpuId):
        chrome_trace = ChromeTraceFormatter()
        if not hasattr(profiler_pb2, "MemEvent"):
            return
        place_to_str = {
            profiler_pb2.MemEvent.CPUPlace: "CPU",
            profiler_pb2.MemEvent.CUDAPlace: "GPU",
            profiler_pb2.MemEvent.CUDAPinnedPlace: "CUDAPinnedPlace"
        }
        for k, profile_pb in six.iteritems(profile_dict):
            rankId = int(k.split(".")[-1])

            trainerId = rankId / self._gpuPerTrainer

            if trainerId >= self._displaySize:
                continue

            mem_list = []
            end_profiler = 0
            for mevent in profile_pb.mem_events:
                crt_info = dict()
                crt_info['time'] = mevent.start_ns
                crt_info['size'] = mevent.bytes
                if mevent.place in place_to_str:
                    place = place_to_str[mevent.place]
                else:
                    place = "UnDefine"

356 357
                if (mevent.place == profiler_pb2.MemEvent.CUDAPlace
                        or mevent.place == profiler_pb2.MemEvent.CUDAPinnedPlace
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
                    ) and mevent.device_id != gpuId:
                    continue

                crt_info['place'] = place
                pid = mem_devices[(k, mevent.device_id, place)]
                crt_info['pid'] = pid
                crt_info['thread_id'] = mevent.thread_id
                crt_info['device_id'] = mevent.device_id
                mem_list.append(crt_info)
                crt_info = dict()
                crt_info['place'] = place
                crt_info['pid'] = pid
                crt_info['thread_id'] = mevent.thread_id
                crt_info['device_id'] = mevent.device_id
                crt_info['time'] = mevent.end_ns
                crt_info['size'] = -mevent.bytes
                mem_list.append(crt_info)
                end_profiler = max(end_profiler, crt_info['time'])
            mem_list.sort(key=lambda tmp: (tmp.get('time', 0)))
            i = 0
            total_size = 0
            while i < len(mem_list):
                total_size += mem_list[i]['size']
                while i < len(mem_list) - 1 and mem_list[i]['time'] == mem_list[
                        i + 1]['time']:
                    total_size += mem_list[i + 1]['size']
                    i += 1

386 387 388 389
                chrome_trace.emit_counter("Memory", "Memory",
                                          mem_list[i]['pid'],
                                          self._align_ts(mem_list[i]['time']),
                                          0, total_size)
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
                i += 1
        return chrome_trace

    def _getOPTraceInfoByGpuId(self, groupId, gpuId):
        fileFist = self.getFileListByGroup(groupId)
        newFileList = []
        for file in fileFist:
            rankId = self.getRankId(file)
            localRank = rankId % self._gpuPerTrainer
            if localRank == gpuId and (rankId / self._gpuPerTrainer
                                       ) % self._groupSize < self._displaySize:
                newFileList.append(file)

        profile_dict = self._parseTask(newFileList)
        initPid = PIPELINEINFO_TRACE_NUM + DCGMINFO_TRACE_NUM + NETINFO_TRACE_NUM
        metaTrace, devicesPid, mem_devicesPid = self._allocate_pids(
            profile_dict, gpuId, initPid)
        eventsTrace = self._allocate_events(profile_dict, devicesPid, gpuId)
        memEventsTrace = self._allocate_memory_event(profile_dict,
                                                     mem_devicesPid, gpuId)

        trace = {}
        trace[
            'traceEvents'] = metaTrace._metadata + eventsTrace._events + memEventsTrace._events
        self.dumpOpInfoDict(trace, groupId, gpuId, True)

        return trace

    def getOPTraceInfo(self, groupId):
        manager = multiprocessing.Manager()
        q = manager.Queue()
        processPool = []
        pidList = []

        for gpuId in range(self._gpuPerTrainer):
425 426 427 428 429
            subproc = Process(target=self._getOPTraceInfoByGpuId,
                              args=(
                                  groupId,
                                  gpuId,
                              ))
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
            processPool.append(subproc)
            subproc.start()
            pidList.append(subproc.pid)
            self._logger.info(
                "[op info]: process [%d] has been started, total task num is %d ..."
                % (subproc.pid, 1))

        for t in processPool:
            t.join()
            pidList.remove(t.pid)
            self._logger.info(
                "[op info]: process [%d] has exited! remained %d process!" %
                (t.pid, len(pidList)))

        opInfo = {}

        return opInfo

    def parseFileByGroup(self, groupId, processNum=8):
        fileFist = self.getFileListByGroup(groupId)
        if processNum == 0:
            return self._parseTask(fileFist)
        else:
            return self._parseTask(fileFist)


def test_profileFileReader():
    args = {
        "dataPath": "data/newdata/profile",
        "groupSize": 4,
        "displaySize": 8,
        "gpuPerTrainer": 8,
        "minTimeStamp": 0,
        "organizeForm": FILEORGANIZEFORM_BYRANK,
    }

    testReader = profileFileReader(getLogger(), args)
    testReader.printArgs()
    data = testReader.getOPTraceInfo(0)

    jsObj = json.dumps(data)
    fileObject = open('jsonFile.json', 'w')
    fileObject.write(jsObj)
    fileObject.close()


if __name__ == "__main__":
    test_profileFileReader()