pydataprovider2.html 103.5 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
9
    <title>How to use PyDataProvider2 &#8212; PaddlePaddle  documentation</title>
Y
Yu Yang 已提交
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
    
    <link rel="stylesheet" href="../../_static/classic.css" type="text/css" />
    <link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    '../../',
        VERSION:     '',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
    <script type="text/javascript" src="../../_static/jquery.js"></script>
    <script type="text/javascript" src="../../_static/underscore.js"></script>
    <script type="text/javascript" src="../../_static/doctools.js"></script>
    <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
Y
Yu Yang 已提交
27
    <link rel="top" title="PaddlePaddle  documentation" href="../../index.html" />
28
    <link rel="up" title="DataProvider Introduction" href="index.html" />
Y
Yu Yang 已提交
29
    <link rel="next" title="Model Config Interface" href="../api/trainer_config_helpers/index.html" />
30
    <link rel="prev" title="DataProvider Introduction" href="index.html" /> 
Y
Yu Yang 已提交
31 32 33 34 35 36 37 38 39
  </head>
  <body role="document">
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../../genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
Y
Yu Yang 已提交
40 41 42 43
          <a href="../../py-modindex.html" title="Python Module Index"
             >modules</a> |</li>
        <li class="right" >
          <a href="../api/trainer_config_helpers/index.html" title="Model Config Interface"
Y
Yu Yang 已提交
44 45
             accesskey="N">next</a> |</li>
        <li class="right" >
46
          <a href="index.html" title="DataProvider Introduction"
Y
Yu Yang 已提交
47
             accesskey="P">previous</a> |</li>
48 49 50
        <li class="nav-item nav-item-0"><a href="../../index.html">PaddlePaddle  documentation</a> &#187;</li>
          <li class="nav-item nav-item-1"><a href="../index.html" >User Interface</a> &#187;</li>
          <li class="nav-item nav-item-2"><a href="index.html" accesskey="U">DataProvider Introduction</a> &#187;</li> 
Y
Yu Yang 已提交
51 52 53 54 55 56 57 58
      </ul>
    </div>  

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body" role="main">
            
Y
Yu Yang 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  <div class="section" id="how-to-use-pydataprovider2">
<h1>How to use PyDataProvider2<a class="headerlink" href="#how-to-use-pydataprovider2" title="Permalink to this headline"></a></h1>
<p>We highly recommand users to use PyDataProvider2 to provide training or testing
data to PaddlePaddle. The user only needs to focus on how to read a single
sample from the original data file by using PyDataProvider2, leaving all of the
trivial work, including, transfering data into cpu/gpu memory, shuffle, binary
serialization to PyDataProvider2. PyDataProvider2 uses multithreading and a
fanscinating but simple cache strategy to optimize the efficiency of the data
providing process.</p>
<div class="section" id="dataprovider-for-the-non-sequential-model">
<h2>DataProvider for the non-sequential model<a class="headerlink" href="#dataprovider-for-the-non-sequential-model" title="Permalink to this headline"></a></h2>
<p>Here we use the MNIST handwriting recognition data as an example to illustrate
how to write a simple PyDataProvider.</p>
<p>MNIST is a handwriting classification data set. It contains 70,000 digital
grayscale images. Labels of the training sample range from 0 to 9. All the
Y
Yu Yang 已提交
74
images have been size-normalized and centered into images with the same size
Y
Yu Yang 已提交
75
of 28 x 28 pixels.</p>
Y
Yu Yang 已提交
76
<p>A small part of the original data as an example is shown as below:</p>
77 78 79
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="mi">5</span><span class="p">;</span><span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.215686</span> <span class="mf">0.533333</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.67451</span> <span class="mf">0.992157</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.070588</span> <span class="mf">0.886275</span> <span class="mf">0.992157</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.192157</span> <span class="mf">0.070588</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.670588</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.117647</span> <span class="mf">0.933333</span> <span class="mf">0.858824</span> <span class="mf">0.313725</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.090196</span> <span class="mf">0.858824</span> <span class="mf">0.992157</span> <span class="mf">0.831373</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.141176</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.611765</span> <span class="mf">0.054902</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.258824</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.529412</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.368627</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.419608</span> <span class="mf">0.003922</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.094118</span> <span class="mf">0.835294</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.517647</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.603922</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.603922</span> <span class="mf">0.545098</span> <span class="mf">0.043137</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.447059</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.956863</span> <span class="mf">0.062745</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.011765</span> <span class="mf">0.666667</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.745098</span> <span class="mf">0.137255</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.152941</span> <span class="mf">0.866667</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.521569</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.070588</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.803922</span> <span class="mf">0.352941</span> <span class="mf">0.745098</span> <span class="mf">0.992157</span> <span class="mf">0.945098</span> <span class="mf">0.317647</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.580392</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.764706</span> <span class="mf">0.043137</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.070588</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.776471</span> <span class="mf">0.043137</span> <span class="mi">0</span> <span class="mf">0.007843</span> <span class="mf">0.27451</span> <span class="mf">0.882353</span> <span class="mf">0.941176</span> <span class="mf">0.176471</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.180392</span> <span class="mf">0.898039</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.313725</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.070588</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.713725</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.627451</span> <span class="mf">0.992157</span> <span class="mf">0.729412</span> <span class="mf">0.062745</span> <span class="mi">0</span> <span class="mf">0.509804</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.776471</span> <span class="mf">0.035294</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.494118</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.968627</span> <span class="mf">0.168627</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.423529</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.364706</span> <span class="mi">0</span> <span class="mf">0.717647</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.317647</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.533333</span> <span class="mf">0.992157</span> <span class="mf">0.984314</span> <span class="mf">0.945098</span> <span class="mf">0.603922</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.003922</span> <span class="mf">0.466667</span> <span class="mf">0.992157</span> <span class="mf">0.988235</span> <span class="mf">0.976471</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.788235</span> <span class="mf">0.007843</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.686275</span> <span class="mf">0.882353</span> <span class="mf">0.364706</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.098039</span> <span class="mf">0.588235</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.980392</span> <span class="mf">0.305882</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.101961</span> <span class="mf">0.67451</span> <span class="mf">0.321569</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.105882</span> <span class="mf">0.733333</span> <span class="mf">0.976471</span> <span class="mf">0.811765</span> <span class="mf">0.713725</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.65098</span> <span class="mf">0.992157</span> <span class="mf">0.321569</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.25098</span> <span class="mf">0.007843</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">1</span> <span class="mf">0.94902</span> <span class="mf">0.219608</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.968627</span> <span class="mf">0.764706</span> <span class="mf">0.152941</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.498039</span> <span class="mf">0.25098</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span><span class="p">;</span>
<span class="mi">0</span><span class="p">;</span><span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.298039</span> <span class="mf">0.333333</span> <span class="mf">0.333333</span> <span class="mf">0.333333</span> <span class="mf">0.337255</span> <span class="mf">0.333333</span> <span class="mf">0.333333</span> <span class="mf">0.109804</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.027451</span> <span class="mf">0.223529</span> <span class="mf">0.776471</span> <span class="mf">0.964706</span> <span class="mf">0.988235</span> <span class="mf">0.988235</span> <span class="mf">0.988235</span> <span class="mf">0.992157</span> <span class="mf">0.988235</span> <span class="mf">0.988235</span> <span class="mf">0.780392</span> <span class="mf">0.098039</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.14902</span> <span class="mf">0.698039</span> <span class="mf">0.988235</span> <span class="mf">0.992157</span> <span class="mf">0.988235</span> <span class="mf">0.901961</span> <span class="mf">0.87451</span> <span class="mf">0.568627</span> <span class="mf">0.882353</span> <span class="mf">0.976471</span> <span class="mf">0.988235</span> <span class="mf">0.988235</span> <span class="mf">0.501961</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.188235</span> <span class="mf">0.647059</span> <span class="mf">0.988235</span> <span class="mf">0.988235</span> <span class="mf">0.745098</span> <span class="mf">0.439216</span> <span class="mf">0.098039</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.572549</span> <span class="mf">0.988235</span> <span class="mf">0.988235</span> <span class="mf">0.988235</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.2</span> <span class="mf">0.933333</span> <span class="mf">0.992157</span> <span class="mf">0.941176</span> <span class="mf">0.247059</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.188235</span> <span class="mf">0.898039</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.039216</span> <span class="mf">0.639216</span> <span class="mf">0.933333</span> <span class="mf">0.988235</span> <span class="mf">0.913725</span> <span class="mf">0.278431</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.113725</span> <span class="mf">0.843137</span> <span class="mf">0.988235</span> <span class="mf">0.988235</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.235294</span> <span class="mf">0.988235</span> <span class="mf">0.992157</span> <span class="mf">0.988235</span> <span class="mf">0.815686</span> <span class="mf">0.07451</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.333333</span> <span class="mf">0.988235</span> <span class="mf">0.988235</span> <span class="mf">0.552941</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.211765</span> <span class="mf">0.878431</span> <span class="mf">0.988235</span> <span class="mf">0.992157</span> <span class="mf">0.701961</span> <span class="mf">0.329412</span> <span class="mf">0.109804</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.698039</span> <span class="mf">0.988235</span> <span class="mf">0.913725</span> <span class="mf">0.145098</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.188235</span> <span class="mf">0.890196</span> <span class="mf">0.988235</span> <span class="mf">0.988235</span> <span class="mf">0.745098</span> <span class="mf">0.047059</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.882353</span> <span class="mf">0.988235</span> <span class="mf">0.568627</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.2</span> <span class="mf">0.933333</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.447059</span> <span class="mf">0.294118</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.447059</span> <span class="mf">0.992157</span> <span class="mf">0.768627</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.623529</span> <span class="mf">0.988235</span> <span class="mf">0.988235</span> <span class="mf">0.988235</span> <span class="mf">0.988235</span> <span class="mf">0.992157</span> <span class="mf">0.47451</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.188235</span> <span class="mf">0.933333</span> <span class="mf">0.87451</span> <span class="mf">0.509804</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.992157</span> <span class="mf">0.988235</span> <span class="mf">0.937255</span> <span class="mf">0.792157</span> <span class="mf">0.988235</span> <span class="mf">0.894118</span> <span class="mf">0.082353</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.027451</span> <span class="mf">0.647059</span> <span class="mf">0.992157</span> <span class="mf">0.654902</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.623529</span> <span class="mf">0.988235</span> <span class="mf">0.913725</span> <span class="mf">0.329412</span> <span class="mf">0.376471</span> <span class="mf">0.184314</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.027451</span> <span class="mf">0.513725</span> <span class="mf">0.988235</span> <span class="mf">0.635294</span> <span class="mf">0.219608</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.196078</span> <span class="mf">0.929412</span> <span class="mf">0.988235</span> <span class="mf">0.988235</span> <span class="mf">0.741176</span> <span class="mf">0.309804</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.529412</span> <span class="mf">0.988235</span> <span class="mf">0.678431</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.223529</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mi">1</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mi">1</span> <span class="mf">0.992157</span> <span class="mf">0.992157</span> <span class="mf">0.882353</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.023529</span> <span class="mf">0.478431</span> <span class="mf">0.654902</span> <span class="mf">0.658824</span> <span class="mf">0.952941</span> <span class="mf">0.988235</span> <span class="mf">0.988235</span> <span class="mf">0.988235</span> <span class="mf">0.992157</span> <span class="mf">0.988235</span> <span class="mf">0.729412</span> <span class="mf">0.278431</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.196078</span> <span class="mf">0.647059</span> <span class="mf">0.764706</span> <span class="mf">0.764706</span> <span class="mf">0.768627</span> <span class="mf">0.580392</span> <span class="mf">0.047059</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span><span class="p">;</span>
<span class="mi">4</span><span class="p">;</span><span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.180392</span> <span class="mf">0.470588</span> <span class="mf">0.623529</span> <span class="mf">0.623529</span> <span class="mf">0.623529</span> <span class="mf">0.588235</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.243137</span> <span class="mf">0.494118</span> <span class="mf">0.862745</span> <span class="mf">0.870588</span> <span class="mf">0.960784</span> <span class="mf">0.996078</span> <span class="mf">0.996078</span> <span class="mf">0.996078</span> <span class="mf">0.996078</span> <span class="mf">0.992157</span> <span class="mf">0.466667</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.317647</span> <span class="mf">0.639216</span> <span class="mf">0.639216</span> <span class="mf">0.639216</span> <span class="mf">0.639216</span> <span class="mf">0.639216</span> <span class="mf">0.470588</span> <span class="mf">0.262745</span> <span class="mf">0.333333</span> <span class="mf">0.929412</span> <span class="mf">0.694118</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.811765</span> <span class="mf">0.694118</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.811765</span> <span class="mf">0.694118</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.811765</span> <span class="mf">0.694118</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.184314</span> <span class="mf">0.992157</span> <span class="mf">0.694118</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.192157</span> <span class="mf">0.996078</span> <span class="mf">0.384314</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.454902</span> <span class="mf">0.980392</span> <span class="mf">0.219608</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.564706</span> <span class="mf">0.941176</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.588235</span> <span class="mf">0.776471</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.945098</span> <span class="mf">0.560784</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.054902</span> <span class="mf">0.952941</span> <span class="mf">0.356863</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.337255</span> <span class="mf">0.917647</span> <span class="mf">0.109804</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.698039</span> <span class="mf">0.701961</span> <span class="mf">0.019608</span> <span class="mf">0.4</span> <span class="mf">0.662745</span> <span class="mf">0.662745</span> <span class="mf">0.662745</span> <span class="mf">0.662745</span> <span class="mf">0.662745</span> <span class="mf">0.662745</span> <span class="mf">0.662745</span> <span class="mf">0.376471</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.090196</span> <span class="mf">0.639216</span> <span class="mf">0.972549</span> <span class="mf">0.945098</span> <span class="mf">0.913725</span> <span class="mf">0.996078</span> <span class="mf">0.996078</span> <span class="mf">0.996078</span> <span class="mf">0.996078</span> <span class="mi">1</span> <span class="mf">0.996078</span> <span class="mf">0.996078</span> <span class="mi">1</span> <span class="mf">0.996078</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.007843</span> <span class="mf">0.105882</span> <span class="mf">0.717647</span> <span class="mf">0.776471</span> <span class="mf">0.905882</span> <span class="mf">0.996078</span> <span class="mf">0.996078</span> <span class="mf">0.988235</span> <span class="mf">0.980392</span> <span class="mf">0.862745</span> <span class="mf">0.537255</span> <span class="mf">0.223529</span> <span class="mf">0.223529</span> <span class="mf">0.368627</span> <span class="mf">0.376471</span> <span class="mf">0.6</span> <span class="mf">0.6</span> <span class="mf">0.6</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.262745</span> <span class="mf">0.470588</span> <span class="mf">0.6</span> <span class="mf">0.996078</span> <span class="mf">0.996078</span> <span class="mf">0.996078</span> <span class="mf">0.996078</span> <span class="mf">0.847059</span> <span class="mf">0.356863</span> <span class="mf">0.156863</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.909804</span> <span class="mf">0.705882</span> <span class="mf">0.823529</span> <span class="mf">0.635294</span> <span class="mf">0.490196</span> <span class="mf">0.219608</span> <span class="mf">0.113725</span> <span class="mf">0.062745</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mf">0.152941</span> <span class="mf">0.152941</span> <span class="mf">0.156863</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span> <span class="mi">0</span><span class="p">;</span>
Y
Yu Yang 已提交
80 81
</pre></div>
</div>
82
<p>Each line of the data contains two parts, separated by <code class="code docutils literal"><span class="pre">;</span></code>. The first part is
Y
Yu Yang 已提交
83 84
label of an image. The second part contains 28x28 pixel float values.</p>
<p>Just write path of the above data into train.list. It looks like this:</p>
85
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">mnist_train</span><span class="o">.</span><span class="n">txt</span>
Y
Yu Yang 已提交
86 87
</pre></div>
</div>
Y
Yu Yang 已提交
88
<p>The corresponding dataprovider is shown as below:</p>
89
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">paddle.trainer.PyDataProvider2</span> <span class="k">import</span> <span class="o">*</span>
Y
Yu Yang 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115


<span class="c1"># Define a py data provider</span>
<span class="nd">@provider</span><span class="p">(</span><span class="n">input_types</span><span class="o">=</span><span class="p">[</span>
    <span class="n">dense_vector</span><span class="p">(</span><span class="mi">28</span> <span class="o">*</span> <span class="mi">28</span><span class="p">),</span>
    <span class="n">integer_value</span><span class="p">(</span><span class="mi">10</span><span class="p">)</span>
<span class="p">])</span>
<span class="k">def</span> <span class="nf">process</span><span class="p">(</span><span class="n">settings</span><span class="p">,</span> <span class="n">filename</span><span class="p">):</span>  <span class="c1"># settings is not used currently.</span>
    <span class="n">f</span> <span class="o">=</span> <span class="nb">open</span><span class="p">(</span><span class="n">filename</span><span class="p">,</span> <span class="s1">&#39;r&#39;</span><span class="p">)</span>  <span class="c1"># open one of training file</span>

    <span class="k">for</span> <span class="n">line</span> <span class="ow">in</span> <span class="n">f</span><span class="p">:</span>  <span class="c1"># read each line</span>
        <span class="n">label</span><span class="p">,</span> <span class="n">pixel</span> <span class="o">=</span> <span class="n">line</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">&#39;;&#39;</span><span class="p">)</span>

        <span class="c1"># get features and label</span>
        <span class="n">pixels_str</span> <span class="o">=</span> <span class="n">pixel</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">&#39; &#39;</span><span class="p">)</span>

        <span class="n">pixels_float</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="k">for</span> <span class="n">each_pixel_str</span> <span class="ow">in</span> <span class="n">pixels_str</span><span class="p">:</span>
            <span class="n">pixels_float</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">float</span><span class="p">(</span><span class="n">each_pixel_str</span><span class="p">))</span>

        <span class="c1"># give data to paddle.</span>
        <span class="k">yield</span> <span class="n">pixels_float</span><span class="p">,</span> <span class="nb">int</span><span class="p">(</span><span class="n">label</span><span class="p">)</span>

    <span class="n">f</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>  <span class="c1"># close file</span>
</pre></div>
</div>
Y
Yu Yang 已提交
116 117 118 119 120 121 122 123
<p>The first line imports PyDataProvider2 package.
The main function is the process function, that has two parameters.
The first parameter is the settings, which is not used in this example.
The second parameter is the filename, that is exactly each line of train.list.
This parameter is passed to the process function by PaddlePaddle.</p>
<p><code class="code docutils literal"><span class="pre">&#64;provider</span></code> is a Python
<a class="reference external" href="http://www.learnpython.org/en/Decorators">Decorator</a> .
It sets some properties to DataProvider, and constructs a real PaddlePaddle
Y
Yu Yang 已提交
124 125
DataProvider from a very simple user implemented python function. It does not
matter if you are not familiar with <a class="reference external" href="http://www.learnpython.org/en/Decorators">Decorator</a>. You can keep it simple by
Y
Yu Yang 已提交
126 127 128 129 130 131 132 133 134
just taking <code class="code docutils literal"><span class="pre">&#64;provider</span></code> as a fixed mark above the provider function you
implemented.</p>
<p><a class="reference internal" href="#input-types">input_types</a> defines the data format that a DataProvider returns.
In this example, it is set to a 28x28-dimensional dense vector and an integer
scalar, whose value ranges from 0 to 9.
<a class="reference internal" href="#input-types">input_types</a> can be set to several kinds of input formats, please refer to the
document of <a class="reference internal" href="#input-types">input_types</a> for more details.</p>
<p>The process method is the core part to construct a real DataProvider in
PaddlePaddle. It implements how to open the text file, how to read one sample
Y
Yu Yang 已提交
135
from the original text file, convert them into <a class="reference internal" href="#input-types">input_types</a>, and give them
Y
Yu Yang 已提交
136
back to PaddlePaddle process at line 23.
Y
Yu Yang 已提交
137
Note that data yielded by the process function must follow the same order that
Y
Yu Yang 已提交
138 139 140 141 142 143 144
<a class="reference internal" href="#input-types">input_types</a> are defined.</p>
<p>With the help of PyDataProvider2, user can focus on how to generate ONE traning
sample by using keywords <code class="code docutils literal"><span class="pre">yield</span></code>.
<code class="code docutils literal"><span class="pre">yield</span></code> is a python keyword, and a concept related to it includes
<code class="code docutils literal"><span class="pre">generator</span></code>.</p>
<p>Only a few lines of codes need to be added into the training configuration file,
you can take this as an example.</p>
145
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">paddle.trainer_config_helpers</span> <span class="k">import</span> <span class="o">*</span>
Y
Yu Yang 已提交
146 147

<span class="n">define_py_data_sources2</span><span class="p">(</span><span class="n">train_list</span><span class="o">=</span><span class="s1">&#39;train.list&#39;</span><span class="p">,</span>
148
                        <span class="n">test_list</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
Y
Yu Yang 已提交
149 150
                        <span class="n">module</span><span class="o">=</span><span class="s1">&#39;mnist_provider&#39;</span><span class="p">,</span>
                        <span class="n">obj</span><span class="o">=</span><span class="s1">&#39;process&#39;</span><span class="p">)</span>
151 152
<span class="n">img</span> <span class="o">=</span> <span class="n">data_layer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;pixel&#39;</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">784</span><span class="p">)</span>
<span class="n">label</span> <span class="o">=</span> <span class="n">data_layer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;label&#39;</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
Y
Yu Yang 已提交
153 154
</pre></div>
</div>
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
<p>Here we specify training data by <code class="code docutils literal"><span class="pre">train.list</span></code>, and no testing data is specified.
The method which actually provide data is <code class="code docutils literal"><span class="pre">process</span></code>.</p>
<p>User also can use another style to provide data, which defines the
<code class="code docutils literal"><span class="pre">data_layer</span></code>&#8216;s name explicitly when <cite>yield</cite>. For example,
the <code class="code docutils literal"><span class="pre">dataprovider</span></code> is shown as below.</p>
<div class="highlight-default"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25</pre></div></td><td class="code"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">paddle.trainer.PyDataProvider2</span> <span class="k">import</span> <span class="o">*</span>


<span class="c1"># Define a py data provider</span>
<span class="nd">@provider</span><span class="p">(</span><span class="n">input_types</span><span class="o">=</span><span class="p">[</span>
    <span class="n">dense_vector</span><span class="p">(</span><span class="mi">28</span> <span class="o">*</span> <span class="mi">28</span><span class="p">),</span>
    <span class="n">integer_value</span><span class="p">(</span><span class="mi">10</span><span class="p">)</span>
<span class="p">])</span>
<span class="k">def</span> <span class="nf">process</span><span class="p">(</span><span class="n">settings</span><span class="p">,</span> <span class="n">filename</span><span class="p">):</span>  <span class="c1"># settings is not used currently.</span>
    <span class="n">f</span> <span class="o">=</span> <span class="nb">open</span><span class="p">(</span><span class="n">filename</span><span class="p">,</span> <span class="s1">&#39;r&#39;</span><span class="p">)</span>  <span class="c1"># open one of training file</span>

    <span class="k">for</span> <span class="n">line</span> <span class="ow">in</span> <span class="n">f</span><span class="p">:</span>  <span class="c1"># read each line</span>
        <span class="n">label</span><span class="p">,</span> <span class="n">pixel</span> <span class="o">=</span> <span class="n">line</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">&#39;;&#39;</span><span class="p">)</span>

        <span class="c1"># get features and label</span>
        <span class="n">pixels_str</span> <span class="o">=</span> <span class="n">pixel</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">&#39; &#39;</span><span class="p">)</span>

        <span class="n">pixels_float</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="k">for</span> <span class="n">each_pixel_str</span> <span class="ow">in</span> <span class="n">pixels_str</span><span class="p">:</span>
            <span class="n">pixels_float</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">float</span><span class="p">(</span><span class="n">each_pixel_str</span><span class="p">))</span>

        <span class="c1"># give data to paddle.</span>
        <span class="k">yield</span> <span class="p">{</span> <span class="s2">&quot;pixel&quot;</span><span class="p">:</span> <span class="n">pixels_float</span><span class="p">,</span> <span class="s1">&#39;label&#39;</span><span class="p">:</span> <span class="nb">int</span><span class="p">(</span><span class="n">label</span><span class="p">)</span> <span class="p">}</span>

    <span class="n">f</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>  <span class="c1"># close file</span>
</pre></div>
</td></tr></table></div>
<p>If user did&#8217;t give the <code class="code docutils literal"><span class="pre">data_layer</span></code>&#8216;s name, PaddlePaddle will use
the order of <code class="code docutils literal"><span class="pre">data_layer</span></code> definition roughly to determine which feature to
which <code class="code docutils literal"><span class="pre">data_layer</span></code>. This order may be not correct, so TO DEFINE THE
<code class="code docutils literal"><span class="pre">data_layer</span></code>&#8216;s NAMES EXPLICITLY IS THE RECOMMANDED WAY TO PROVIDER DATA.</p>
Y
Yu Yang 已提交
215 216 217 218
<p>Now, this simple example of using PyDataProvider is finished.
The only thing that the user should know is how to generte <strong>one sample</strong> from
<strong>one data file</strong>.
And PaddlePadle will do all of the rest things:</p>
Y
Yu Yang 已提交
219
<ul class="simple">
Y
Yu Yang 已提交
220 221 222 223 224
<li>Form a training batch</li>
<li>Shuffle the training data</li>
<li>Read data with multithreading</li>
<li>Cache the training data (Optional)</li>
<li>CPU-&gt; GPU double buffering.</li>
Y
Yu Yang 已提交
225
</ul>
Y
Yu Yang 已提交
226
<p>Is this cool?</p>
Y
Yu Yang 已提交
227
</div>
Y
Yu Yang 已提交
228 229 230 231
<div class="section" id="dataprovider-for-the-sequential-model">
<h2>DataProvider for the sequential model<a class="headerlink" href="#dataprovider-for-the-sequential-model" title="Permalink to this headline"></a></h2>
<p>A sequence model takes sequences as its input. A sequence is made up of several
timesteps. The so-called timestep, is not necessary to have something to do
232
with time. It can also be explained to that the order of data are taken into
Y
Yu Yang 已提交
233 234 235 236 237 238 239
consideration into model design and training.
For example, the sentence can be interpreted as a kind of sequence data in NLP
tasks.</p>
<p>Here is an example on data proivider for English sentiment classification data.
The original input data are simple English text, labeled into positive or
negative sentiment (marked by 0 and 1 respectively).</p>
<p>A small part of the original data as an example can be found in the path below:</p>
240 241 242
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="mi">0</span>       <span class="n">I</span> <span class="n">saw</span> <span class="n">this</span> <span class="n">movie</span> <span class="n">at</span> <span class="n">the</span> <span class="n">AFI</span> <span class="n">Dallas</span> <span class="n">festival</span> <span class="o">.</span> <span class="n">It</span> <span class="nb">all</span> <span class="n">takes</span> <span class="n">place</span> <span class="n">at</span> <span class="n">a</span> <span class="n">lake</span> <span class="n">house</span> <span class="ow">and</span> <span class="n">it</span> <span class="n">looks</span> <span class="n">wonderful</span> <span class="o">.</span>
<span class="mi">1</span>       <span class="n">This</span> <span class="n">documentary</span> <span class="n">makes</span> <span class="n">you</span> <span class="n">travel</span> <span class="nb">all</span> <span class="n">around</span> <span class="n">the</span> <span class="n">globe</span> <span class="o">.</span> <span class="n">It</span> <span class="n">contains</span> <span class="n">rare</span> <span class="ow">and</span> <span class="n">stunning</span> <span class="n">sequels</span> <span class="kn">from</span> <span class="nn">the</span> <span class="n">wilderness</span> <span class="o">.</span>
<span class="o">...</span>
Y
Yu Yang 已提交
243 244
</pre></div>
</div>
Y
Yu Yang 已提交
245
<p>The corresponding data provider can be found in the path below:</p>
246
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">paddle.trainer.PyDataProvider2</span> <span class="k">import</span> <span class="o">*</span>
Y
Yu Yang 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292


<span class="k">def</span> <span class="nf">on_init</span><span class="p">(</span><span class="n">settings</span><span class="p">,</span> <span class="n">dictionary</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
    <span class="c1"># on_init will invoke when data provider is initialized. The dictionary</span>
    <span class="c1"># is passed from trainer_config, and is a dict object with type</span>
    <span class="c1"># (word string =&gt; word id).</span>

    <span class="c1"># set input types in runtime. It will do the same thing as</span>
    <span class="c1"># @provider(input_types) will do, but it is set dynamically during runtime.</span>
    <span class="n">settings</span><span class="o">.</span><span class="n">input_types</span> <span class="o">=</span> <span class="p">[</span>
        <span class="c1"># The text is a sequence of integer values, and each value is a word id.</span>
        <span class="c1"># The whole sequence is the sentences that we want to predict its</span>
        <span class="c1"># sentimental.</span>
        <span class="n">integer_value</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">dictionary</span><span class="p">),</span> <span class="n">seq_type</span><span class="o">=</span><span class="n">SequenceType</span><span class="p">),</span>  <span class="c1"># text input</span>

        <span class="c1"># label positive/negative</span>
        <span class="n">integer_value</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
    <span class="p">]</span>

    <span class="c1"># save dictionary as settings.dictionary. It will be used in process</span>
    <span class="c1"># method.</span>
    <span class="n">settings</span><span class="o">.</span><span class="n">dictionary</span> <span class="o">=</span> <span class="n">dictionary</span>


<span class="nd">@provider</span><span class="p">(</span><span class="n">init_hook</span><span class="o">=</span><span class="n">on_init</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">process</span><span class="p">(</span><span class="n">settings</span><span class="p">,</span> <span class="n">filename</span><span class="p">):</span>
    <span class="n">f</span> <span class="o">=</span> <span class="nb">open</span><span class="p">(</span><span class="n">filename</span><span class="p">,</span> <span class="s1">&#39;r&#39;</span><span class="p">)</span>

    <span class="k">for</span> <span class="n">line</span> <span class="ow">in</span> <span class="n">f</span><span class="p">:</span>  <span class="c1"># read each line of file</span>
        <span class="n">label</span><span class="p">,</span> <span class="n">sentence</span> <span class="o">=</span> <span class="n">line</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\t</span><span class="s1">&#39;</span><span class="p">)</span>  <span class="c1"># get label and sentence</span>
        <span class="n">words</span> <span class="o">=</span> <span class="n">sentence</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">&#39; &#39;</span><span class="p">)</span>  <span class="c1"># get words</span>

        <span class="c1"># convert word string to word id</span>
        <span class="c1"># the word not in dictionary will be ignored.</span>
        <span class="n">word_ids</span> <span class="o">=</span> <span class="p">[]</span>

        <span class="k">for</span> <span class="n">each_word</span> <span class="ow">in</span> <span class="n">words</span><span class="p">:</span>
            <span class="k">if</span> <span class="n">each_word</span> <span class="ow">in</span> <span class="n">settings</span><span class="o">.</span><span class="n">dictionary</span><span class="p">:</span>
                <span class="n">word_ids</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">settings</span><span class="o">.</span><span class="n">dictionary</span><span class="p">[</span><span class="n">each_word</span><span class="p">])</span>

        <span class="c1"># give data to paddle.</span>
        <span class="k">yield</span> <span class="n">word_ids</span><span class="p">,</span> <span class="nb">int</span><span class="p">(</span><span class="n">label</span><span class="p">)</span>

    <span class="n">f</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
</pre></div>
</div>
Y
Yu Yang 已提交
293
<p>This data provider for sequential model is a little more complex than that
Y
Yu Yang 已提交
294 295 296 297 298
for MINST dataset.
A new initialization method is introduced here.
The method <code class="code docutils literal"><span class="pre">on_init</span></code> is configured to DataProvider by <code class="code docutils literal"><span class="pre">&#64;provider</span></code>&#8216;s
<code class="code docutils literal"><span class="pre">init_hook</span></code> parameter, and it will be invoked once DataProvider is
initialized. The <code class="code docutils literal"><span class="pre">on_init</span></code> function has the following parameters:</p>
Y
Yu Yang 已提交
299
<ul class="simple">
Y
Yu Yang 已提交
300 301 302 303 304
<li>The first parameter is the settings object.</li>
<li>The rest parameters are passed by key word arguments. Some of them are passed
by PaddlePaddle, see reference for <a class="reference internal" href="#init-hook">init_hook</a>.
The <code class="code docutils literal"><span class="pre">dictionary</span></code> object is a python dict object passed from the trainer
configuration file, and it maps word string to word id.</li>
Y
Yu Yang 已提交
305
</ul>
Y
Yu Yang 已提交
306 307
<p>To pass these parameters into DataProvider, the following lines should be added
into trainer configuration file.</p>
308
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">paddle.trainer_config_helpers</span> <span class="k">import</span> <span class="o">*</span>
Y
Yu Yang 已提交
309 310 311 312

<span class="n">dictionary</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">()</span>
<span class="o">...</span>  <span class="c1">#  read dictionary from outside</span>

313
<span class="n">define_py_data_sources2</span><span class="p">(</span><span class="n">train_list</span><span class="o">=</span><span class="s1">&#39;train.list&#39;</span><span class="p">,</span> <span class="n">test_list</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
Y
Yu Yang 已提交
314 315 316 317 318 319 320
                        <span class="n">module</span><span class="o">=</span><span class="s1">&#39;sentimental_provider&#39;</span><span class="p">,</span> <span class="n">obj</span><span class="o">=</span><span class="s1">&#39;process&#39;</span><span class="p">,</span>
                        <span class="c1"># above codes same as mnist sample.</span>
                        <span class="n">args</span><span class="o">=</span><span class="p">{</span>  <span class="c1"># pass to provider.</span>
                            <span class="s1">&#39;dictionary&#39;</span><span class="p">:</span> <span class="n">dictionary</span>
                        <span class="p">})</span>
</pre></div>
</div>
Y
Yu Yang 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
<p>The definition is basically same as MNIST example, except:
* Load dictionary in this configuration
* Pass it as a parameter to the DataProvider</p>
<p>The <cite>input_types</cite> is configured in method <code class="code docutils literal"><span class="pre">on_init</span></code>. It has the same
effect to configure them by <code class="code docutils literal"><span class="pre">&#64;provider</span></code>&#8216;s <code class="code docutils literal"><span class="pre">input_types</span></code> parameter.
However, the <code class="code docutils literal"><span class="pre">input_types</span></code> is set at runtime, so we can set it to
different types according to the input data. Input of the neural network is a
sequence of word id, so set <code class="code docutils literal"><span class="pre">seq_type</span></code> to <code class="code docutils literal"><span class="pre">integer_value_sequence</span></code>.</p>
<p>Durning <code class="code docutils literal"><span class="pre">on_init</span></code>, we save <code class="code docutils literal"><span class="pre">dictionary</span></code> variable to
<code class="code docutils literal"><span class="pre">settings</span></code>, and it will be used in <code class="code docutils literal"><span class="pre">process</span></code>. Note the settings
parameter for the process function and for the on_init&#8217;s function are a same
object.</p>
<p>The basic processing logic is the same as MNIST&#8217;s <code class="code docutils literal"><span class="pre">process</span></code> method. Each
sample in the data file is given back to PaddlePaddle process.</p>
<p>Thus, the basic usage of PyDataProvider is here.
Please refer to the following section reference for details.</p>
Y
Yu Yang 已提交
337 338
</div>
<div class="section" id="reference">
Y
Yu Yang 已提交
339
<h2>Reference<a class="headerlink" href="#reference" title="Permalink to this headline"></a></h2>
Y
Yu Yang 已提交
340 341
<div class="section" id="provider">
<h3>&#64;provider<a class="headerlink" href="#provider" title="Permalink to this headline"></a></h3>
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
<dl class="function">
<dt id="paddle.trainer.PyDataProvider2.provider">
<code class="descclassname">paddle.trainer.PyDataProvider2.</code><code class="descname">provider</code><span class="sig-paren">(</span><em>input_types=None</em>, <em>should_shuffle=None</em>, <em>pool_size=-1</em>, <em>min_pool_size=-1</em>, <em>can_over_batch_size=True</em>, <em>calc_batch_size=None</em>, <em>cache=0</em>, <em>check=False</em>, <em>check_fail_continue=False</em>, <em>use_dynamic_order=True</em>, <em>init_hook=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#paddle.trainer.PyDataProvider2.provider" title="Permalink to this definition"></a></dt>
<dd><p>Provider decorator. Use it to make a function into PyDataProvider2 object.
In this function, user only need to get each sample for some train/test
file.</p>
<p>The basic usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nd">@provider</span><span class="p">(</span><span class="n">some</span> <span class="n">data</span> <span class="n">provider</span> <span class="n">config</span> <span class="n">here</span><span class="o">...</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">process</span><span class="p">(</span><span class="n">settings</span><span class="p">,</span> <span class="n">file_name</span><span class="p">):</span>
    <span class="k">while</span> <span class="ow">not</span> <span class="n">at</span> <span class="n">end</span> <span class="n">of</span> <span class="n">file_name</span><span class="p">:</span>
        <span class="n">sample</span> <span class="o">=</span> <span class="n">readOneSampleFromFile</span><span class="p">(</span><span class="n">file_name</span><span class="p">)</span>
        <span class="k">yield</span> <span class="n">sample</span><span class="o">.</span>
</pre></div>
</div>
<p>The configuration of data provider should be setup by:</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>input_types</strong> (<em>list|tuple</em>) &#8211; Specify the input types, can also be set in init_hook.
It is a list of InputType object. For example, input_types=                         [dense_vector(9), integer_value(2)].</li>
<li><strong>should_shuffle</strong> (<em>bool</em>) &#8211; True if data should shuffle. Pass None means shuffle
when is training and not to shuffle when is testing.</li>
<li><strong>pool_size</strong> (<em>int</em>) &#8211; Max number of sample in data pool.</li>
<li><strong>min_pool_size</strong> (<em>int</em>) &#8211; Set minimal sample in data pool. The PaddlePaddle will
random pick sample in pool. So the min_pool_size
effect the randomize of data.</li>
<li><strong>can_over_batch_size</strong> (<em>bool</em>) &#8211; <p>True if paddle can return a mini-batch larger
than batch size in settings. It is useful when
custom calculate one sample&#8217;s batch_size.</p>
<p>It is very danger to set it to false and use
calc_batch_size together. Default is false.</p>
</li>
<li><strong>calc_batch_size</strong> (<em>callable</em>) &#8211; a method to calculate each sample&#8217;s batch size.
Default each sample&#8217;s batch size is 1. But to you
can customize each sample&#8217;s batch size.</li>
<li><strong>cache</strong> (<em>int</em>) &#8211; Cache strategy of Data Provider. Default is CacheType.NO_CACHE</li>
<li><strong>init_hook</strong> (<em>callable</em>) &#8211; <p>Initialize hook. Useful when data provider need load some
external data like dictionary. The parameter is
(settings, file_list, **kwargs).</p>
<ul>
<li>settings. It is the global settings object. User can set
settings.input_types here.</li>
<li>file_list. All file names for passed to data provider.</li>
<li>is_train. Is this data provider used for training or not.</li>
<li>kwargs. Other keyword arguments passed from
trainer_config&#8217;s args parameter.</li>
</ul>
</li>
<li><strong>check</strong> (<em>bool</em>) &#8211; Check the yield data format is as same as input_types. Enable
this will make data provide process slow but it is very useful
for debug. Default is disabled.</li>
<li><strong>check_fail_continue</strong> (<em>bool</em>) &#8211; Continue train or not when check failed. Just
drop the wrong format data when it is True. Has
no effect when check set to False.</li>
<li><strong>use_dynamic_order</strong> (<em>bool</em>) &#8211; Allow provider to yield a dictionary object, whose
key is a input data layer name, and value is the
feature value. The tuples are still allowed when
use_dynmaic_order is True.</li>
Y
Yu Yang 已提交
402
</ul>
403 404 405 406 407 408
</td>
</tr>
</tbody>
</table>
</dd></dl>

Y
Yu Yang 已提交
409 410 411
</div>
<div class="section" id="input-types">
<h3>input_types<a class="headerlink" href="#input-types" title="Permalink to this headline"></a></h3>
Y
Yu Yang 已提交
412 413
<p>PaddlePaddle has four data types, and three sequence types.
The four data types are:</p>
Y
Yu Yang 已提交
414
<ul class="simple">
415 416
<li><code class="code docutils literal"><span class="pre">dense_vector</span></code>: dense float vector.</li>
<li><code class="code docutils literal"><span class="pre">sparse_binary_vector</span></code>: sparse binary vector, most of the value is 0, and
Y
Yu Yang 已提交
417
the non zero elements are fixed to 1.</li>
418 419 420
<li><code class="code docutils literal"><span class="pre">sparse_float_vector</span></code>: sparse float vector, most of the value is 0, and some
non zero elements can be any float value. They are given by the user.</li>
<li><code class="code docutils literal"><span class="pre">integer</span></code>: an integer scalar, that is especially used for label or word index.</li>
Y
Yu Yang 已提交
421
</ul>
422
<p>The three sequence types are:</p>
Y
Yu Yang 已提交
423
<ul class="simple">
424 425 426
<li><code class="code docutils literal"><span class="pre">SequenceType.NO_SEQUENCE</span></code> means the sample is not a sequence.</li>
<li><code class="code docutils literal"><span class="pre">SequenceType.SEQUENCE</span></code> means the sample is a sequence.</li>
<li><code class="code docutils literal"><span class="pre">SequenceType.SUB_SEQUENCE</span></code> means it is a nested sequence, that each timestep of
Y
Yu Yang 已提交
427
the input sequence is also a sequence.</li>
Y
Yu Yang 已提交
428
</ul>
Y
Yu Yang 已提交
429 430
<p>Different input type has a defferenct input format. Their formats are shown
in the above table.</p>
Y
Yu Yang 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
<table border="1" class="docutils">
<colgroup>
<col width="17%" />
<col width="17%" />
<col width="28%" />
<col width="38%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head">&nbsp;</th>
<th class="head">NO_SEQUENCE</th>
<th class="head">SEQUENCE</th>
<th class="head">SUB_SEQUENCE</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td>dense_vector</td>
<td>[f, f, ...]</td>
<td>[[f, ...], [f, ...], ...]</td>
<td>[[[f, ...], ...], [[f, ...], ...],...]</td>
</tr>
<tr class="row-odd"><td>sparse_binary_vector</td>
<td>[i, i, ...]</td>
<td>[[i, ...], [i, ...], ...]</td>
<td>[[[i, ...], ...], [[i, ...], ...],...]</td>
</tr>
<tr class="row-even"><td>sparse_float_vector</td>
<td>[(i,f), (i,f), ...]</td>
<td>[[(i,f), ...], [(i,f), ...], ...]</td>
<td>[[[(i,f), ...], ...], [[(i,f), ...], ...],...]</td>
</tr>
<tr class="row-odd"><td>integer_value</td>
<td>i</td>
<td>[i, i, ...]</td>
<td>[[i, ...], [i, ...], ...]</td>
</tr>
</tbody>
</table>
Y
Yu Yang 已提交
468
<p>where f represents a float value, i represents an integer value.</p>
Y
Yu Yang 已提交
469 470 471
</div>
<div class="section" id="init-hook">
<h3>init_hook<a class="headerlink" href="#init-hook" title="Permalink to this headline"></a></h3>
Y
Yu Yang 已提交
472 473
<p>init_hook is a function that is invoked once the data provoder is initialized.
Its parameters lists as follows:</p>
474 475 476 477 478 479
<ul class="simple">
<li>The first parameter is a settings object, which is the same to <code class="code docutils literal"><span class="pre">settings</span></code>
in <code class="code docutils literal"><span class="pre">process</span></code> method. The object contains several attributes, including:<ul>
<li><code class="code docutils literal"><span class="pre">settings.input_types</span></code>: the input types. Reference <a class="reference internal" href="#input-types">input_types</a>.</li>
<li><code class="code docutils literal"><span class="pre">settings.logger</span></code>: a logging object.</li>
</ul>
Y
Yu Yang 已提交
480
</li>
481 482 483 484 485 486
<li>The rest parameters are the key word arguments. It is made up of PaddpePaddle
pre-defined parameters and user defined parameters.<ul>
<li>PaddlePaddle-defined parameters including:<ul>
<li><code class="code docutils literal"><span class="pre">is_train</span></code> is a bool parameter that indicates the DataProvider is used in
training or testing.</li>
<li><code class="code docutils literal"><span class="pre">file_list</span></code> is the list of all files.</li>
Y
Yu Yang 已提交
487
</ul>
488
</li>
Y
Yu Yang 已提交
489
<li>User-defined parameters args can be set in training configuration.</li>
Y
Yu Yang 已提交
490 491 492
</ul>
</li>
</ul>
Y
Yu Yang 已提交
493 494 495
<p>Note, PaddlePaddle reserves the right to add pre-defined parameter, so please
use <code class="code docutils literal"><span class="pre">**kwargs</span></code> in init_hook to ensure compatibility by accepting the
parameters which your init_hook does not use.</p>
Y
Yu Yang 已提交
496 497 498
</div>
<div class="section" id="cache">
<h3>cache<a class="headerlink" href="#cache" title="Permalink to this headline"></a></h3>
499
<p>DataProvider provides two simple cache strategy. They are:</p>
Y
Yu Yang 已提交
500
<ul class="simple">
501 502 503
<li><code class="code docutils literal"><span class="pre">CacheType.NO_CACHE</span></code> means do not cache any data, then data is read at runtime by
the user implemented python module every pass.</li>
<li><code class="code docutils literal"><span class="pre">CacheType.CACHE_PASS_IN_MEM</span></code> means the first pass reads data by the user
Y
Yu Yang 已提交
504 505
implemented python module, and the rest passes will directly read data from
memory.</li>
Y
Yu Yang 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518
</ul>
</div>
</div>
</div>


          </div>
        </div>
      </div>
      <div class="sphinxsidebar" role="navigation" aria-label="main navigation">
        <div class="sphinxsidebarwrapper">
  <h3><a href="../../index.html">Table Of Contents</a></h3>
  <ul>
Y
Yu Yang 已提交
519 520 521 522
<li><a class="reference internal" href="#">How to use PyDataProvider2</a><ul>
<li><a class="reference internal" href="#dataprovider-for-the-non-sequential-model">DataProvider for the non-sequential model</a></li>
<li><a class="reference internal" href="#dataprovider-for-the-sequential-model">DataProvider for the sequential model</a></li>
<li><a class="reference internal" href="#reference">Reference</a><ul>
Y
Yu Yang 已提交
523 524 525 526 527 528 529 530 531 532 533 534
<li><a class="reference internal" href="#provider">&#64;provider</a></li>
<li><a class="reference internal" href="#input-types">input_types</a></li>
<li><a class="reference internal" href="#init-hook">init_hook</a></li>
<li><a class="reference internal" href="#cache">cache</a></li>
</ul>
</li>
</ul>
</li>
</ul>

  <h4>Previous topic</h4>
  <p class="topless"><a href="index.html"
535
                        title="previous chapter">DataProvider Introduction</a></p>
Y
Yu Yang 已提交
536
  <h4>Next topic</h4>
Y
Yu Yang 已提交
537 538
  <p class="topless"><a href="../api/trainer_config_helpers/index.html"
                        title="next chapter">Model Config Interface</a></p>
Y
Yu Yang 已提交
539 540 541 542 543 544 545 546 547 548
  <div role="note" aria-label="source link">
    <h3>This Page</h3>
    <ul class="this-page-menu">
      <li><a href="../../_sources/ui/data_provider/pydataprovider2.txt"
            rel="nofollow">Show Source</a></li>
    </ul>
   </div>
<div id="searchbox" style="display: none" role="search">
  <h3>Quick search</h3>
    <form class="search" action="../../search.html" method="get">
549 550
      <div><input type="text" name="q" /></div>
      <div><input type="submit" value="Go" /></div>
Y
Yu Yang 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
      <input type="hidden" name="check_keywords" value="yes" />
      <input type="hidden" name="area" value="default" />
    </form>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../../genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
Y
Yu Yang 已提交
567 568 569 570
          <a href="../../py-modindex.html" title="Python Module Index"
             >modules</a> |</li>
        <li class="right" >
          <a href="../api/trainer_config_helpers/index.html" title="Model Config Interface"
Y
Yu Yang 已提交
571 572
             >next</a> |</li>
        <li class="right" >
573
          <a href="index.html" title="DataProvider Introduction"
Y
Yu Yang 已提交
574
             >previous</a> |</li>
575 576 577
        <li class="nav-item nav-item-0"><a href="../../index.html">PaddlePaddle  documentation</a> &#187;</li>
          <li class="nav-item nav-item-1"><a href="../index.html" >User Interface</a> &#187;</li>
          <li class="nav-item nav-item-2"><a href="index.html" >DataProvider Introduction</a> &#187;</li> 
Y
Yu Yang 已提交
578 579 580
      </ul>
    </div>
    <div class="footer" role="contentinfo">
581 582
        &#169; Copyright 2016, PaddlePaddle developers.
      Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.4.6.
Y
Yu Yang 已提交
583 584 585
    </div>
  </body>
</html>