operator.cc 17.1 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14
#include <glog/logging.h>
Q
Qiao Longfei 已提交
15

16
#include <algorithm>
D
dzhwinter 已提交
17

18
#include "paddle/framework/data_transform.h"
19
#include "paddle/framework/device_data_transform.h"
D
dzhwinter 已提交
20 21
#include "paddle/framework/executor.h"
#include "paddle/framework/operator.h"
22
#include "paddle/framework/shape_inference.h"
23
#include "paddle/framework/var_type.h"
Q
Qiao Longfei 已提交
24 25 26 27

namespace paddle {
namespace framework {

D
dzhwinter 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

void UseCPU() {
  kKernelPriority.clear();
  /*Plain CPU*/
  auto pair0 = std::make_tuple(platform::CPUPlace(), LibraryType::kPlain);
  kKernelPriority.insert(kKernelPriority.begin(), pair0);
}

void UseMKLDNN() {
  UseCPU();
#if PADDLE_WITH_MKLML
  {
    /*MKLDNN Kernel*/
    auto pair0 = std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN);
    kKernelPriority.insert(kKernelPriority.begin(), pair0);
  }
#endif
}

void UseCUDA() {
  UseMKLDNN();
#if PADDLE_WITH_CUDA
  /*Plain GPU*/
  auto pair0 = std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain);
  kKernelPriority.insert(kKernelPriority.begin(), pair0);
#endif
}

void UseCUDNN() {
  UseCUDA();
#if PADDLE_WITH_CUDA
  if (platform::dynload::HasCUDNN()) {
    /*CUDNN Kernel*/
    auto pair0 = std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN);
    kKernelPriority.insert(kKernelPriority.begin(), pair0);
  }
#endif
}

void UseALL() {
  UseCPU();
  UseMKLDNN();
  UseCUDA();
  UseCUDNN();
}

75 76 77 78 79 80 81 82 83 84 85
static DDim GetDims(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var->IsType<LoDTensor>()) {
    return var->Get<LoDTensor>().dims();
  } else if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().GetCompleteDims();
  } else {
    return DDim({-1});
  }
}

86
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
87
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
88
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
89 90
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
91
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
92 93
}

Y
Yu Yang 已提交
94 95
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
96
  auto it = inputs_.find(name);
97 98
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
99
  return it->second;
Y
Yan Chunwei 已提交
100 101
}

102
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
103
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
104
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
105 106
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
107
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
108 109
}

Y
Yu Yang 已提交
110 111
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
112
  auto it = outputs_.find(name);
113 114
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
115
  return it->second;
Y
Yan Chunwei 已提交
116 117
}

118
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
119
  std::stringstream ss;
Y
Yu Yang 已提交
120
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
121 122
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
123 124 125
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
      ss << input.second[i];
126 127 128
      if (scope) {
        ss << "(" << GetDims(*scope, input.second[i]) << ")";
      }
Y
Yu Yang 已提交
129 130 131
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
132
    }
Y
Yu Yang 已提交
133
    ss << "]";
Y
Yu Yang 已提交
134 135
    ++it;
    if (it != inputs_.end()) {
136 137
      ss << ", ";
    }
Q
Qiao Longfei 已提交
138
  }
Y
Yu Yang 已提交
139
  ss << "}, outputs:{";
Y
Yu Yang 已提交
140 141
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
142 143 144
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
      ss << output.second[i];
145 146 147
      if (scope) {
        ss << "(" << GetDims(*scope, output.second[i]) << ")";
      }
Y
Yu Yang 已提交
148 149 150
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
151
    }
Y
Yu Yang 已提交
152
    ss << "]";
Y
Yu Yang 已提交
153 154
    ++it;
    if (it != outputs_.end()) {
155 156
      ss << ", ";
    }
Q
Qiao Longfei 已提交
157
  }
Y
Yu Yang 已提交
158
  ss << "}.";
Q
Qiao Longfei 已提交
159 160 161
  return ss.str();
}

D
dongzhihong 已提交
162 163
void OperatorBase::Rename(const std::string& old_name,
                          const std::string& new_name) {
Y
Yu Yang 已提交
164 165 166 167 168 169 170
  for (auto& input : inputs_) {
    std::replace(input.second.begin(), input.second.end(), old_name, new_name);
  }
  for (auto& output : outputs_) {
    std::replace(output.second.begin(), output.second.end(), old_name,
                 new_name);
  }
D
dongzhihong 已提交
171 172
}

Y
Yu Yang 已提交
173
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
174 175
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
176 177
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
178 179
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
180
}
181

Q
qijun 已提交
182 183
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
184
  for (auto& o : inputs_) {
Q
qijun 已提交
185 186 187 188 189 190
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
191 192 193 194 195 196 197 198 199 200
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
201
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
202 203

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
204
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
205 206 207 208 209 210 211 212 213
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
214 215
}

216 217 218
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
219
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
220 221 222

  for (auto& in : op_info->Proto().inputs()) {
    PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
Y
Yu Yang 已提交
223
                   "Type %s's input %s is not set", Type(), in.name());
224 225 226 227
  }

  for (auto& out : op_info->Proto().outputs()) {
    PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
Y
Yu Yang 已提交
228
                   "Type %s's output %s is not set", Type(), out.name());
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

245 246 247 248
static bool VarIsTensor(const Variable* var) {
  return var->IsType<LoDTensor>() || var->IsType<SelectedRows>();
}

Q
QI JUN 已提交
249 250 251 252 253 254 255
static const Tensor* GetTensorFromVar(const Variable* var) {
  const Tensor* t = nullptr;
  if (var->IsType<LoDTensor>()) {
    t = &(var->Get<LoDTensor>());
  } else if (var->IsType<SelectedRows>()) {
    t = &(var->Get<SelectedRows>().value());
  } else {
Y
Yang Yang 已提交
256 257
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
258 259 260 261 262 263 264 265 266 267 268
  }
  return t;
}

static Tensor* GetMutableTensorFromVar(Variable* var) {
  Tensor* t = nullptr;
  if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
  } else if (var->IsType<SelectedRows>()) {
    t = var->GetMutable<SelectedRows>()->mutable_value();
  } else {
Y
Yang Yang 已提交
269 270
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
271 272 273 274
  }
  return t;
}

275
template <>
276
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
277
  auto* var = InputVar(name);
278
  return var == nullptr ? nullptr : GetTensorFromVar(var);
279 280 281
}

template <>
282
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
283 284 285 286
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
287 288 289 290 291
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr : GetTensorFromVar(var);
                 });
292 293 294 295
  return res;
}

template <>
296
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
297
  auto var = OutputVar(name);
Q
QI JUN 已提交
298
  return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
299 300 301
}

template <>
302
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
303 304 305 306
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
307 308
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
309 310
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr
Q
QI JUN 已提交
311
                                         : GetMutableTensorFromVar(var);
312
                 });
313 314 315
  return res;
}

Y
Yu Yang 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const override {
    auto& ins = Inputs(name);
    size_t length = ins.size();
    if (length == 0) {
      return false;
    }
    PADDLE_ENFORCE_EQ(length, 1UL, "Input %s should have more than one inputs",
                      name);
    auto ipt = ins[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasOutput(const std::string& name) const override {
    auto& outs = Outputs(name);
    size_t length = outs.size();
    if (length == 0) {
      return false;
    }
    PADDLE_ENFORCE_EQ(length, 1UL, "Output %s should have more than one inputs",
                      name);
    auto ipt = outs[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasInputs(const std::string& name) const override {
    auto inputs = op_.Inputs(name);
    if (inputs.empty()) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
    auto outputs = op_.Outputs(name);
    if (outputs.empty()) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

  DDim GetInputDim(const std::string& name) const override {
    return GetDim(op_.Input(name));
  }

  void SetOutputDim(const std::string& name, const DDim& dim) override {
    SetDim(op_.Output(name), dim);
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

Q
Qiao Longfei 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
  }

422 423 424
  bool IsRuntime() const override { return true; }

 protected:
425 426 427 428 429 430 431
  DDim GetDim(const std::string& name) const override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
Y
Yang Yang 已提交
432 433
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
434 435 436 437 438 439 440 441 442 443
    }
  }

  void SetDim(const std::string& name, const DDim& dim) override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
Y
Yang Yang 已提交
444 445
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
446 447 448
    }
  }

449
  proto::VarDesc::VarType GetVarType(const std::string& name) const override {
450 451 452 453 454
    auto* var = scope_.FindVar(name);
    return ToVarType(var->Type());
  }

 private:
455 456 457 458 459
  const OperatorBase& op_;
  const Scope& scope_;
};

void OperatorWithKernel::Run(const Scope& scope,
D
dzhwinter 已提交
460
                             const platform::Place& place) const {
461 462
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);
Y
Yu Yang 已提交
463 464
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto dev_ctx = pool.Get(place);
465 466 467 468 469

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
470 471
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
472 473
  }

D
dzhwinter 已提交
474
  ExecutionContext ctx(*this, scope, *dev_ctx);
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);

  Scope& new_scope = scope.NewScope();

  for (auto& var_name_item : this->Inputs()) {
    for (auto& var_name : var_name_item.second) {
      auto* var = scope.FindVar(var_name);
      if (var && VarIsTensor(var)) {
        auto* tensor_in = GetTensorFromVar(var);
        if (tensor_in->IsInitialized()) {
          auto kernel_type_for_var = this->GetKernelTypeForVar(
              var_name_item.first, *tensor_in, expected_kernel_key);
          if (kernel_type_for_var != expected_kernel_key) {
            auto out_var_names = OutputVars(true);
            if (std::find(out_var_names.begin(), out_var_names.end(),
                          var_name) != out_var_names.end()) {
              PADDLE_THROW(
                  "var %s is both input and output, "
                  "does not support transform",
                  var_name);
            }
            VLOG(3) << "need to do transform for var " << var_name;
            auto* trans_var = new_scope.Var(var_name);
            auto* out = DataTransform(expected_kernel_key, kernel_type_for_var,
                                      *tensor_in);
            CopyVariableWithTensor(*var, *out, *trans_var);
          }
Q
QI JUN 已提交
502 503
        }
      }
504 505
    }
  }
Q
QI JUN 已提交
506

507
  OpKernelMap& kernels = kernels_iter->second;
D
dzhwinter 已提交
508 509
  auto kernel_iter = kernels.find(expected_kernel_key);

510
  kernel_iter->second->Compute(ExecutionContext(*this, new_scope, *dev_ctx));
Q
Qiao Longfei 已提交
511 512
}

513
proto::DataType OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
          int tmp = static_cast<int>(ToDataType(t->type()));
          PADDLE_ENFORCE(tmp == data_type || data_type == -1,
                         "DataType of Paddle Op %s must be the same.", Type());
          data_type = tmp;
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
539
  return static_cast<proto::DataType>(data_type);
Y
Yu Yang 已提交
540
}
541

542 543 544 545 546 547 548 549 550 551 552
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
  return OpKernelType(expected_kernel_type.data_type_, tensor.place());
}

Q
Qiao Longfei 已提交
553
}  // namespace framework
L
liaogang 已提交
554
}  // namespace paddle