index_en.html 24.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Chinese Word Embedding Model Tutorial &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../../genindex.html"/>
        <link rel="search" title="Search" href="../../search.html"/>
35
    <link rel="top" title="PaddlePaddle  documentation" href="../../index.html"/> 
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
65
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
66 67 68 69 70 71 72 73 74 75 76 77
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
78
          <li><a href="/">Home</a></li>
79 80 81 82
        </ul>
      </div>
      <div class="doc-module">
        
83
        <ul>
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_en.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../about/index_en.html">ABOUT</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
108
          <ul>
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_en.html">PaddlePaddle in Docker Containers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/ubuntu_install_en.html">Debian Package installation guide</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/build_from_source_en.html">Installing from Sources</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_en.html">Run Distributed Training</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_en.html">Paddle On Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
128
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/build_en.html">Build PaddlePaddle from Source Code and Run Unit Test</a></li>
129 130
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/new_layer_en.html">Write New Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
131 132 133 134
<li class="toctree-l2"><a class="reference internal" href="../../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
135 136 137 138
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_en.html">API</a><ul>
139 140 141
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/layer.html">Layers</a></li>
142
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/evaluators.html">Evaluators</a></li>
143 144 145 146 147 148
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
149
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a></li>
150
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../about/index_en.html">ABOUT</a></li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Chinese Word Embedding Model Tutorial</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="chinese-word-embedding-model-tutorial">
<span id="chinese-word-embedding-model-tutorial"></span><h1>Chinese Word Embedding Model Tutorial<a class="headerlink" href="#chinese-word-embedding-model-tutorial" title="Permalink to this headline"></a></h1>
<hr class="docutils" />
<p>This tutorial is to guide you through the process of using a Pretrained Chinese Word Embedding Model in the PaddlePaddle standard format.</p>
<p>We thank &#64;lipeng for the pull request that defined the model schemas and pretrained the models.</p>
<div class="section" id="introduction">
<span id="introduction"></span><h2>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline"></a></h2>
<div class="section" id="chinese-word-dictionary">
<span id="chinese-word-dictionary"></span><h3>Chinese Word Dictionary<a class="headerlink" href="#chinese-word-dictionary" title="Permalink to this headline"></a></h3>
192
<p>Our Chinese-word dictionary is created on Baidu ZhiDao and Baidu Baike by using in-house word segmentor. For example, the participle of &#8220;《红楼梦》&#8221; is &#8220;&#8221;&#8221;红楼梦&#8221;&#8221;&#8221;,and &#8220;《红楼梦》&#8221;. Our dictionary (using UTF-8 format) has has two columns: word and its frequency. The total word count is 3206326, including 4 special token:</p>
193 194 195
<ul class="simple">
<li><code class="docutils literal"><span class="pre">&lt;s&gt;</span></code>: the start of a sequence</li>
<li><code class="docutils literal"><span class="pre">&lt;e&gt;</span></code>: the end of a sequence</li>
196
<li><code class="docutils literal"><span class="pre">PALCEHOLDER_JUST_IGNORE_THE_EMBEDDING</span></code>: a placeholder, just ignore it and its embedding</li>
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
<li><code class="docutils literal"><span class="pre">&lt;unk&gt;</span></code>: a word not included in dictionary</li>
</ul>
</div>
<div class="section" id="pretrained-chinese-word-embedding-model">
<span id="pretrained-chinese-word-embedding-model"></span><h3>Pretrained Chinese Word Embedding Model<a class="headerlink" href="#pretrained-chinese-word-embedding-model" title="Permalink to this headline"></a></h3>
<p>Inspired by paper <a class="reference external" href="http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf">A Neural Probabilistic Language Model</a>, our model architecture (<strong>Embedding joint of six words-&gt;FullyConnect-&gt;SoftMax</strong>) is as following graph. And for our dictionary, we pretrain four models with different word vector dimenstions, i.e 32, 64, 128, 256.
<center><img alt="" src="../../_images/neural-n-gram-model.png" /></center>
<center>Figure 1. neural-n-gram-model</center></p>
</div>
<div class="section" id="download-and-extract">
<span id="download-and-extract"></span><h3>Download and Extract<a class="headerlink" href="#download-and-extract" title="Permalink to this headline"></a></h3>
<p>To download and extract our dictionary and pretrained model, run the following commands.</p>
<div class="highlight-default"><div class="highlight"><pre><span></span>cd $PADDLE_ROOT/demo/model_zoo/embedding
./pre_DictAndModel.sh
</pre></div>
</div>
</div>
</div>
<div class="section" id="chinese-paraphrasing-example">
<span id="chinese-paraphrasing-example"></span><h2>Chinese Paraphrasing Example<a class="headerlink" href="#chinese-paraphrasing-example" title="Permalink to this headline"></a></h2>
<p>We provide a paraphrasing task to show the usage of pretrained Chinese Word Dictionary and Embedding Model.</p>
<div class="section" id="data-preparation-and-preprocess">
<span id="data-preparation-and-preprocess"></span><h3>Data Preparation and Preprocess<a class="headerlink" href="#data-preparation-and-preprocess" title="Permalink to this headline"></a></h3>
<p>First, run the following commands to download and extract the in-house dataset. The dataset (using UTF-8 format) has 20 training samples, 5 testing samples and 2 generating samples.</p>
<div class="highlight-default"><div class="highlight"><pre><span></span>cd $PADDLE_ROOT/demo/seqToseq/data
./paraphrase_data.sh
</pre></div>
</div>
<p>Second, preprocess data and build dictionary on train data by running the following commands, and the preprocessed dataset is stored in <code class="docutils literal"><span class="pre">$PADDLE_SOURCE_ROOT/demo/seqToseq/data/pre-paraphrase</span></code>:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span>cd $PADDLE_ROOT/demo/seqToseq/
python preprocess.py -i data/paraphrase [--mergeDict]
</pre></div>
</div>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">--mergeDict</span></code>: if using this option, the source and target dictionary are merged, i.e, two dictionaries have the same context. Here, as source and target data are all chinese words, this option can be used.</li>
</ul>
</div>
<div class="section" id="user-specified-embedding-model">
<span id="user-specified-embedding-model"></span><h3>User Specified Embedding Model<a class="headerlink" href="#user-specified-embedding-model" title="Permalink to this headline"></a></h3>
<p>The general command of extracting desired parameters from the pretrained embedding model based on user dictionary is:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span>cd $PADDLE_ROOT/demo/model_zoo/embedding
python extract_para.py --preModel PREMODEL --preDict PREDICT --usrModel USRMODEL--usrDict USRDICT -d DIM
</pre></div>
</div>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">--preModel</span> <span class="pre">PREMODEL</span></code>: the name of pretrained embedding model</li>
<li><code class="docutils literal"><span class="pre">--preDict</span> <span class="pre">PREDICT</span></code>: the name of pretrained dictionary</li>
<li><code class="docutils literal"><span class="pre">--usrModel</span> <span class="pre">USRMODEL</span></code>: the name of extracted embedding model</li>
<li><code class="docutils literal"><span class="pre">--usrDict</span> <span class="pre">USRDICT</span></code>: the name of user specified dictionary</li>
<li><code class="docutils literal"><span class="pre">-d</span> <span class="pre">DIM</span></code>: dimension of parameter</li>
</ul>
<p>Here, you can simply run the command:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span>cd $PADDLE_ROOT/demo/seqToseq/data/
./paraphrase_model.sh
</pre></div>
</div>
<p>And you will see following embedding model structure:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">paraphrase_model</span>
<span class="o">|---</span> <span class="n">_source_language_embedding</span>
<span class="o">|---</span> <span class="n">_target_language_embedding</span>
</pre></div>
</div>
</div>
<div class="section" id="training-model-in-paddlepaddle">
<span id="training-model-in-paddlepaddle"></span><h3>Training Model in PaddlePaddle<a class="headerlink" href="#training-model-in-paddlepaddle" title="Permalink to this headline"></a></h3>
<p>First, create a model config file, see example <code class="docutils literal"><span class="pre">demo/seqToseq/paraphrase/train.conf</span></code>:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">seqToseq_net</span> <span class="k">import</span> <span class="o">*</span>
<span class="n">is_generating</span> <span class="o">=</span> <span class="kc">False</span>

<span class="c1">################## Data Definition #####################</span>
<span class="n">train_conf</span> <span class="o">=</span> <span class="n">seq_to_seq_data</span><span class="p">(</span><span class="n">data_dir</span> <span class="o">=</span> <span class="s2">&quot;./data/pre-paraphrase&quot;</span><span class="p">,</span>
                             <span class="n">job_mode</span> <span class="o">=</span> <span class="n">job_mode</span><span class="p">)</span>

<span class="c1">############## Algorithm Configuration ##################</span>
<span class="n">settings</span><span class="p">(</span>
      <span class="n">learning_method</span> <span class="o">=</span> <span class="n">AdamOptimizer</span><span class="p">(),</span>
      <span class="n">batch_size</span> <span class="o">=</span> <span class="mi">50</span><span class="p">,</span>
      <span class="n">learning_rate</span> <span class="o">=</span> <span class="mf">5e-4</span><span class="p">)</span>

<span class="c1">################# Network configure #####################</span>
<span class="n">gru_encoder_decoder</span><span class="p">(</span><span class="n">train_conf</span><span class="p">,</span> <span class="n">is_generating</span><span class="p">,</span> <span class="n">word_vector_dim</span> <span class="o">=</span> <span class="mi">32</span><span class="p">)</span>
</pre></div>
</div>
<p>This config is almost the same as <code class="docutils literal"><span class="pre">demo/seqToseq/translation/train.conf</span></code>.</p>
<p>Then, train the model by running the command:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span>cd $PADDLE_SOURCE_ROOT/demo/seqToseq/paraphrase
./train.sh
</pre></div>
</div>
<p>where <code class="docutils literal"><span class="pre">train.sh</span></code> is almost the same as <code class="docutils literal"><span class="pre">demo/seqToseq/translation/train.sh</span></code>, the only difference is following two command arguments:</p>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">--init_model_path</span></code>: path of the initialization model, here is <code class="docutils literal"><span class="pre">data/paraphrase_model</span></code></li>
<li><code class="docutils literal"><span class="pre">--load_missing_parameter_strategy</span></code>: operations when model file is missing, here use a normal distibution to initialize the other parameters except for the embedding layer</li>
</ul>
<p>For users who want to understand the dataset format, model architecture and training procedure in detail, please refer to <a class="reference internal" href="../text_generation/index_en.html"><span class="doc">Text generation Tutorial</span></a>.</p>
</div>
</div>
<div class="section" id="optional-function">
<span id="optional-function"></span><h2>Optional Function<a class="headerlink" href="#optional-function" title="Permalink to this headline"></a></h2>
<div class="section" id="embedding-parameters-observation">
<span id="embedding-parameters-observation"></span><h3>Embedding Parameters Observation<a class="headerlink" href="#embedding-parameters-observation" title="Permalink to this headline"></a></h3>
<p>For users who want to observe the embedding parameters, this function can convert a PaddlePaddle binary embedding model to a text model by running the command:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span>cd $PADDLE_ROOT/demo/model_zoo/embedding
python paraconvert.py --b2t -i INPUT -o OUTPUT -d DIM
</pre></div>
</div>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">-i</span> <span class="pre">INPUT</span></code>: the name of input binary embedding model</li>
<li><code class="docutils literal"><span class="pre">-o</span> <span class="pre">OUTPUT</span></code>: the name of output text embedding model</li>
<li><code class="docutils literal"><span class="pre">-d</span> <span class="pre">DIM</span></code>: the dimension of parameter</li>
</ul>
<p>You will see parameters like this in output text model:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="mi">0</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">32156096</span>
<span class="o">-</span><span class="mf">0.7845433</span><span class="p">,</span><span class="mf">1.1937413</span><span class="p">,</span><span class="o">-</span><span class="mf">0.1704215</span><span class="p">,</span><span class="mf">0.4154715</span><span class="p">,</span><span class="mf">0.9566584</span><span class="p">,</span><span class="o">-</span><span class="mf">0.5558153</span><span class="p">,</span><span class="o">-</span><span class="mf">0.2503305</span><span class="p">,</span> <span class="o">......</span>
<span class="mf">0.0000909</span><span class="p">,</span><span class="mf">0.0009465</span><span class="p">,</span><span class="o">-</span><span class="mf">0.0008813</span><span class="p">,</span><span class="o">-</span><span class="mf">0.0008428</span><span class="p">,</span><span class="mf">0.0007879</span><span class="p">,</span><span class="mf">0.0000183</span><span class="p">,</span><span class="mf">0.0001984</span><span class="p">,</span> <span class="o">......</span>
<span class="o">......</span>
</pre></div>
</div>
<ul class="simple">
<li>1st line is <strong>PaddlePaddle format file head</strong>, it has 3 attributes:<ul>
<li>version of PaddlePaddle, here is 0</li>
<li>sizeof(float), here is 4</li>
<li>total number of parameter, here is 32156096</li>
</ul>
</li>
<li>Other lines print the paramters (assume <code class="docutils literal"><span class="pre">&lt;dim&gt;</span></code> = 32)<ul>
<li>each line print 32 paramters splitted by &#8216;,&#8217;</li>
<li>there is 32156096/32 = 1004877 lines, meaning there is 1004877 embedding words</li>
</ul>
</li>
</ul>
</div>
<div class="section" id="embedding-parameters-revision">
<span id="embedding-parameters-revision"></span><h3>Embedding Parameters Revision<a class="headerlink" href="#embedding-parameters-revision" title="Permalink to this headline"></a></h3>
<p>For users who want to revise the embedding parameters, this function can convert a revised text embedding model to a PaddlePaddle binary model by running the command:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span>cd $PADDLE_ROOT/demo/model_zoo/embedding
python paraconvert.py --t2b -i INPUT -o OUTPUT
</pre></div>
</div>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">-i</span> <span class="pre">INPUT</span></code>: the name of input text embedding model.</li>
<li><code class="docutils literal"><span class="pre">-o</span> <span class="pre">OUTPUT</span></code>: the name of output binary embedding model</li>
</ul>
<p>Note that the format of input text model is as follows:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="o">-</span><span class="mf">0.7845433</span><span class="p">,</span><span class="mf">1.1937413</span><span class="p">,</span><span class="o">-</span><span class="mf">0.1704215</span><span class="p">,</span><span class="mf">0.4154715</span><span class="p">,</span><span class="mf">0.9566584</span><span class="p">,</span><span class="o">-</span><span class="mf">0.5558153</span><span class="p">,</span><span class="o">-</span><span class="mf">0.2503305</span><span class="p">,</span> <span class="o">......</span>
<span class="mf">0.0000909</span><span class="p">,</span><span class="mf">0.0009465</span><span class="p">,</span><span class="o">-</span><span class="mf">0.0008813</span><span class="p">,</span><span class="o">-</span><span class="mf">0.0008428</span><span class="p">,</span><span class="mf">0.0007879</span><span class="p">,</span><span class="mf">0.0000183</span><span class="p">,</span><span class="mf">0.0001984</span><span class="p">,</span> <span class="o">......</span>
<span class="o">......</span>
</pre></div>
</div>
<ul class="simple">
<li>there is no file header in 1st line</li>
<li>each line stores parameters for one word, the separator is commas &#8216;,&#8217;</li>
</ul>
</div>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
389 390
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
391 392 393 394 395
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
396
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
397 398 399 400 401 402 403 404 405 406 407 408 409
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
410
</html>