eager_method.cc 61.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>

#include <string>
#include <vector>

#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"

20
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
21
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
22
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
23
#include "paddle/fluid/eager/autograd_meta.h"
24 25
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
26
#include "paddle/fluid/eager/utils.h"
27
#include "paddle/fluid/framework/convert_utils.h"
28 29 30 31 32 33
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
34
#include "paddle/fluid/pybind/slice_utils.h"
35
#include "paddle/fluid/pybind/uva_utils.h"
36 37 38 39
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
40 41
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
W
wanghuancoder 已提交
42
#include "pybind11/detail/internals.h"
W
wanghuancoder 已提交
43 44 45
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
#include "paddle/fluid/framework/python_headers.h"
#include "paddle/fluid/pybind/tensor_py.h"
J
Jiabin Yang 已提交
46

47 48 49
namespace paddle {
namespace pybind {

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
namespace py = ::pybind11;

class PyTensorHook : public egr::TensorHook {
 public:
  explicit PyTensorHook(PyObject* func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyTensorHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  paddle::experimental::Tensor operator()(
      const paddle::experimental::Tensor& var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyTensorHook for var " << var.name();

    PyObject* res = nullptr;
    try {
      res = PyObject_CallFunctionObjArgs(py_func_, ToPyObject(var), nullptr);
    } catch (platform::EnforceNotMet& e) {
      throw std::move(e);
    } catch (std::exception& e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }
    return reinterpret_cast<TensorObject*>(res)->tensor;
  }

 private:
  PyObject* py_func_;
};

class PyTensorVoidHook : public egr::TensorVoidHook {
 public:
  explicit PyTensorVoidHook(PyObject* func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyTensorVoidHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  void operator()() override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyTensorVoidHook";

    try {
      PyObject_CallFunctionObjArgs(py_func_, nullptr);
    } catch (platform::EnforceNotMet& e) {
      throw std::move(e);
    } catch (std::exception& e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }
  }

 private:
  PyObject* py_func_;
};

126 127 128
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
                                     bool zero_copy);
129

130
extern PyTypeObject* p_tensor_type;
131

J
Jiabin Yang 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
  if (PyObject_IsInstance(obj, reinterpret_cast<PyObject*>(p_tensor_type))) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
    paddle::experimental::Tensor tensor = CastPyArg2Tensor(obj, 0);
    PADDLE_ENFORCE_EQ(
        tensor.initialized(), true,
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "We should only get paddle::experimental::Tensor or VarBase in this "
        "method, when you reach this means we got another type index."));
  }
}

bool PyCheckTensor(PyObject* obj) {
  return PyObject_IsInstance(obj, reinterpret_cast<PyObject*>(p_tensor_type));
}

155 156 157
static PyObject* tensor_method_numpy(TensorObject* self, PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl()) {
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_FLOAT_), 1,
        py_dims, py_strides, nullptr,
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }
174 175
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
176
  auto sizeof_dtype = paddle::framework::DataTypeSize(self->tensor.type());
177 178 179 180 181 182 183 184
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    py_dims[i] = static_cast<size_t>(tensor_dims[i]);
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }
W
wanghuancoder 已提交
185

186 187 188 189 190 191 192
  PyObject* array = api.PyArray_NewFromDescr_(
      api.PyArray_Type_, api.PyArray_DescrFromType_(numpy_dtype),
      tensor_dims.size(), py_dims, py_strides, nullptr,
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

W
wanghuancoder 已提交
193 194 195 196
  if (!self->tensor.impl()->initialized()) {
    return array;
  }

197
  if (self->tensor.is_cpu() || self->tensor.is_gpu_pinned()) {
198
    platform::CPUPlace place;
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
      auto* dense_tensor = static_cast<paddle::framework::LoDTensor*>(
          selected_rows->mutable_value());

      // deep copy
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
          place, dense_tensor->data(), sizeof_dtype * numel);
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      // deep copy
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
          place, dense_tensor->data(), sizeof_dtype * numel);
    }

222
#if defined(PADDLE_WITH_CUDA)
223
  } else if (self->tensor.is_gpu()) {
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
      auto* dense_tensor = static_cast<paddle::framework::LoDTensor*>(
          selected_rows->mutable_value());
      paddle::platform::GpuMemcpySync(
          pybind11::detail::array_proxy(array)->data, dense_tensor->data(),
          paddle::framework::DataTypeSize(dense_tensor->dtype()) *
              dense_tensor->numel(),
          cudaMemcpyDeviceToHost);
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      paddle::platform::GpuMemcpySync(
          pybind11::detail::array_proxy(array)->data, dense_tensor->data(),
          paddle::framework::DataTypeSize(dense_tensor->dtype()) *
              dense_tensor->numel(),
          cudaMemcpyDeviceToHost);
    }
245 246 247 248 249 250 251 252 253 254 255 256
#endif
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
    Py_INCREF(Py_None);
    return Py_None;
  }

  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

257 258 259 260
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
261
  return ToPyObject(self->tensor.initialized());
262 263 264
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278
static PyObject* tensor_method__is_dense_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  if (dense_tensor) {
    return ToPyObject(dense_tensor->IsInitialized());
  } else {
    return ToPyObject(false);
  }

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

279 280 281
static PyObject* tensor_method__copy_to(TensorObject* self, PyObject* args,
                                        PyObject* kwargs) {
  EAGER_TRY
282 283
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
284
  auto cp_tensor = self->tensor.copy_to(place, blocking);
285 286 287
  egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
  egr::EagerUtils::autograd_meta(&cp_tensor)
      ->SetPersistable(
288
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
289 290 291 292
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

293 294 295
static PyObject* tensor_method_cpu(TensorObject* self, PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
296
  auto cp_tensor = self->tensor.copy_to(phi::CPUPlace(), true);
297 298 299 300 301 302 303 304
  egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
  egr::EagerUtils::autograd_meta(&cp_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

305 306 307 308
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
309 310 311
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  std::string orig_name = self->tensor.name();
312 313
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
314
  self->tensor = src_tensor;
315 316

  // Recover source name
317
  self->tensor.set_name(orig_name);
318 319

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
320
          << " to " << self->tensor.name();
321 322 323 324 325
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

326 327 328
static PyObject* tensor_method_copy_(TensorObject* self, PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
329 330
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
331
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
332
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
333
          << self->tensor.name();
334
  if (!self->tensor.initialized()) {
335
    egr::EagerUtils::autograd_meta(&(self->tensor))
336 337
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
338
    egr::EagerUtils::autograd_meta(&(self->tensor))
339 340
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
341 342 343 344 345 346 347
    if (src_tensor.initialized()) {
      self->tensor.copy_(src_tensor, src_tensor.inner_place(), blocking);
    }
  } else {
    if (src_tensor.initialized()) {
      self->tensor.copy_(src_tensor, self->tensor.inner_place(), blocking);
    }
348 349
  }

350
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
351
          << self->tensor.name();
352 353 354 355 356
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

357 358
static PyObject* tensor_retain_grads(TensorObject* self, PyObject* args,
                                     PyObject* kwargs) {
359
  EAGER_TRY
360
  if (egr::Controller::Instance().HasGrad()) {
361
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
362
    if (!meta->GetMutableGradNode()) {
363
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
364
              << "become accumulation node";
365
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
366
    }
367
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
368
  }
369 370 371 372 373
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

374 375
static PyObject* tensor_clear_gradient(TensorObject* self, PyObject* args,
                                       PyObject* kwargs) {
376
  EAGER_TRY
377
  VLOG(4) << "ClearGradient " << self->tensor.name();
378

379 380 381
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
J
Jiabin Yang 已提交
382
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
383 384
  }

385 386
  paddle::experimental::Tensor* grad;
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
387 388 389 390 391 392
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
393
  } else {
394
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
395
    grad = meta->MutableGrad();
396 397
  }

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
  if (grad->impl()) {
    if (grad->is_selected_rows()) {
      auto selected_rows =
          std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
      if (selected_rows->mutable_value()->IsInitialized()) {
        selected_rows->mutable_rows()->clear();
        selected_rows->mutable_value()->clear();
      }
    } else if (grad->is_dense_tensor()) {
      if (grad->initialized()) {
        if (set_to_zero) {
          grad->set_impl(paddle::experimental::zeros_like(*grad).impl());
        } else {
          VLOG(4) << "Gradient of " << self->tensor.name()
                  << " is initialized, will be released.";
          auto dense_tensor =
              std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
          dense_tensor->MoveMemoryHolder();
        }
417 418
      }
    }
419
  }
420

421 422 423 424 425
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

426 427
static PyObject* tensor__zero_grads(TensorObject* self, PyObject* args,
                                    PyObject* kwargs) {
428
  EAGER_TRY
429
  VLOG(4) << "ZeroGrads " << self->tensor.name();
430

431
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
432
    // Add RetainGrad as PostHook to AccumulationNode
433 434 435 436 437 438 439 440 441
    paddle::experimental::Tensor* grad =
        egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
      grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
442
    }
443
  } else {
444
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
445
    if (meta->MutableGrad()->initialized()) {
446 447
      meta->MutableGrad()->set_impl(
          paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
448
    }
449 450 451 452 453 454 455
  }

  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

456 457 458
static PyObject* tensor__share_buffer_to(TensorObject* self, PyObject* args,
                                         PyObject* kwargs) {
  EAGER_TRY
459 460 461
  paddle::experimental::Tensor* dst_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
  PADDLE_ENFORCE_EQ(self->tensor.initialized(), true,
462 463 464
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
465
                        self->tensor.name()));
466
  auto* src_tensor =
467
      static_cast<paddle::framework::Tensor*>(self->tensor.impl().get());
468 469 470
  if (!dst_ptr->defined()) {
    dst_ptr->set_impl(std::make_shared<phi::DenseTensor>());
  }
471 472 473 474
  auto dst_tensor =
      static_cast<paddle::framework::Tensor*>(dst_ptr->impl().get());
  dst_tensor->ShareDataWith(*src_tensor);
  dst_tensor->ShareDataTypeWith(*src_tensor);
475 476 477 478 479
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

480 481 482 483
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
484 485 486
  paddle::experimental::Tensor* dst_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
  PADDLE_ENFORCE_EQ(self->tensor.initialized(), true,
487 488 489
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
490
                        self->tensor.name()));
491
  bool res = false;
492
  if (!self->tensor.defined() || !dst_ptr->defined()) {
493 494 495
    return ToPyObject(res);
  }
  auto* self_ptr =
496
      static_cast<paddle::framework::Tensor*>(self->tensor.impl().get());
497 498 499 500 501 502 503
  auto dst_tensor =
      static_cast<paddle::framework::Tensor*>(dst_ptr->impl().get());
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

504 505 506 507
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
508 509 510
  paddle::experimental::Tensor* src_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
  PADDLE_ENFORCE_EQ(self->tensor.initialized(), true,
511 512 513
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
514 515
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
516 517 518 519 520
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

521 522 523 524
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
525 526
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
527 528 529 530 531 532
  PADDLE_ENFORCE_EQ(src_tensor.initialized(), true,
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
533
  if (!self->tensor.defined() || !src_tensor.defined()) {
534 535
    return ToPyObject(res);
  }
536
  res = (self->tensor.impl().get() == src_tensor.impl().get());
537 538 539 540
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

541 542 543
static PyObject* tensor_method_detach(TensorObject* self, PyObject* args,
                                      PyObject* kwargs) {
  EAGER_TRY
544
  PADDLE_ENFORCE_EQ(
545
      self->tensor.initialized(), true,
546
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
547
                                        self->tensor.name()));
548

549
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
550
  if (obj) {
551 552 553 554 555 556
    auto v = reinterpret_cast<TensorObject*>(obj);
    new (&(v->tensor)) paddle::experimental::Tensor();
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
557 558 559 560 561 562 563 564 565 566
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

567 568 569 570
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
571 572 573 574
  if (!self->tensor.defined()) {
    Py_IncRef(Py_None);
    return Py_None;
  }
575 576 577
  if (self->tensor.is_dense_tensor()) {
    auto* tensor =
        static_cast<paddle::framework::LoDTensor*>(self->tensor.impl().get());
578 579 580 581 582 583 584 585 586
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
  } else {
    Py_IncRef(Py_None);
    return Py_None;
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
static PyObject* tensor_method_get_underline_selected_rows(TensorObject* self,
                                                           PyObject* args,
                                                           PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    Py_IncRef(Py_None);
    return Py_None;
  }
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    return ToPyObject(selected_rows);
  } else {
    Py_IncRef(Py_None);
    return Py_None;
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
606 607 608
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
609
  EAGER_TRY
J
Jiabin Yang 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
      decrease_axis, none_axes, infer_flags, list_select_idxs;
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
  PADDLE_ENFORCE_EQ(
      self->tensor.is_initialized(), true,
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  ParseIndexingSlice(tensor, _index, &slice_axes, &slice_starts, &slice_ends,
                     &slice_strides, &decrease_axis, &none_axes, &infer_flags,
                     &list_select_idxs, &list_select_flag);

  auto out = slice_axes.empty() && !list_select_flag
                 ? self->tensor
                 : paddle::experimental::Tensor(
                       egr::Controller::Instance().GenerateUniqueName());

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
    if (op_type == "slice") {
      out = slice_dygraph_function(self->tensor, paddle::experimental::Tensor(),
W
wanghuancoder 已提交
649
                                   paddle::experimental::Tensor(), {}, {},
J
Jiabin Yang 已提交
650 651
                                   std::move(attrs));
    } else if (op_type == "strided_slice") {
W
wanghuancoder 已提交
652 653 654 655
      out = strided_slice_dygraph_function(
          self->tensor, paddle::experimental::Tensor(),
          paddle::experimental::Tensor(), paddle::experimental::Tensor(), {},
          {}, {}, attrs);
J
Jiabin Yang 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

  if (!none_axes.empty()) {
    // Deal with cases when all axes are decreased.
    // After slice, the shape of out is [1], which should have been
    // [], but Paddle doesn't support scalar.
    // In order to ensure the correctness of the final shape of out,
    // one dimension of out needs to be decreased.
    // For example:
    // # x.shape: (2,3,4)
    // out = x[0, 1, 1, None] # out.shape : (1)
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
      none_axes.pop_back();
    }
    if (!none_axes.empty()) {
      // Deal with cases that decrease_axes is not empty
      // For example:
      // # x.shape: (2,3,4)
      // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
      for (auto& axis : none_axes) {
        int len = 0;
        for (int da : decrease_axis) {
          if (da < axis) {
            len++;
          }
        }
        axis -= len;
      }

      paddle::experimental::Tensor new_out;
      framework::AttributeMap attrs = {{"axes", none_axes}};
      new_out = std::get<0>(unsqueeze2_dygraph_function(out, std::move(attrs)));
      return ToPyObject(new_out);
    }
  }

  // the index is a list
  if (list_select_flag) {
    auto select_index = paddle::experimental::Tensor(
        egr::Controller::Instance().GenerateUniqueName());
    auto idx_tensor = std::make_shared<phi::DenseTensor>();
W
wanghuancoder 已提交
704
    select_index.set_impl(idx_tensor);
J
Jiabin Yang 已提交
705 706 707 708 709 710 711 712 713 714
    auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
        egr::Controller::Instance().GetExpectedPlace());
    paddle::framework::TensorFromVector(list_select_idxs, *dev_ctx,
                                        idx_tensor.get());
    framework::AttributeMap attrs = {{"dim", 0}};
    out = index_select_dygraph_function(self->tensor, select_index,
                                        std::move(attrs));
  }

  return ToPyObject(out);
715 716 717
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
static PyObject* tensor__getitem_from_offset(TensorObject* self, PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  PADDLE_ENFORCE_NOT_NULL(
      ptr, platform::errors::InvalidArgument("%s is not a DenseTensor.",
                                             self->tensor.name()));
  const auto& tensor = *ptr;
  PADDLE_ENFORCE_EQ(
      tensor.IsInitialized(), true,
      platform::errors::InvalidArgument(
          "Tensor of %s is Empty, please check if it has no data.",
          self->tensor.name()));

  const auto& tensor_dims = tensor.dims();

  std::vector<size_t> dims(tensor_dims.size());
  std::vector<size_t> strides(tensor_dims.size());

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    strides[i] = numel;
    dims[i] = static_cast<size_t>(tensor_dims[i]);
    numel *= dims[i];
  }
  size_t offset = 0;
  if (PyTuple_Size(args) == 0) {
    PADDLE_ENFORCE_EQ(numel, 1,
                      platform::errors::InvalidArgument(
                          "only one element tensors can be converted to Python "
                          "scalars when no input coordinates"));
  } else if (PyTuple_Size(args) == 1) {
    offset = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
    PADDLE_ENFORCE_LT(
        offset, numel,
        platform::errors::InvalidArgument(
            "index %d is out of bounds for size %d", offset, numel));
  } else {
    PADDLE_ENFORCE_EQ(PyTuple_Size(args), dims.size(),
                      platform::errors::InvalidArgument(
                          "incorrect number of indices for Tensor"));

    for (Py_ssize_t i = 0; i < PyTuple_Size(args); ++i) {
      size_t index = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, i), i);
      PADDLE_ENFORCE_LT(
          index, dims[i],
          platform::errors::InvalidArgument(
              "index %d is out fo bounds for axis %d with size %d", index, i,
              dims[i]));
      offset += index * strides[i];
    }
  }
#define PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(_) \
  _(bool, DataType::BOOL)                     \
  _(int8_t, DataType::INT8)                   \
  _(uint8_t, DataType::UINT8)                 \
  _(int16_t, DataType::INT16)                 \
  _(uint16_t, DataType::UINT16)               \
  _(int32_t, DataType::INT32)                 \
  _(uint32_t, DataType::UINT32)               \
  _(int64_t, DataType::INT64)                 \
  _(uint64_t, DataType::UINT64)               \
  _(bfloat16, DataType::BFLOAT16)             \
  _(float16, DataType::FLOAT16)               \
  _(float, DataType::FLOAT32)                 \
  _(double, DataType::FLOAT64)                \
  _(complex64, DataType::COMPLEX64)           \
  _(complex128, DataType::COMPLEX128)

#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.dtype() == proto_type) {                                        \
    auto numpy_dtype = TensorDtype2NumpyDtype(proto_type);                   \
    T b = paddle::pybind::TensorGetElement<T>(tensor, offset);               \
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];                  \
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];               \
    py_dims[0] = 1;                                                          \
    py_strides[0] = 1;                                                       \
    auto& api = pybind11::detail::npy_api::get();                            \
    PyObject* array = api.PyArray_NewFromDescr_(                             \
        api.PyArray_Type_, api.PyArray_DescrFromType_(numpy_dtype), 1,       \
        py_dims, py_strides, nullptr,                                        \
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |                      \
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,                 \
        nullptr);                                                            \
    std::memcpy(                                                             \
        reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
        static_cast<void*>(&b), sizeof(b));                                  \
    return array;                                                            \
  }

  PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Call __setitem_eager_tensor";

  auto self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());

  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  PyObject* value_obj = PyTuple_GET_ITEM(args, 1);
  // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
  // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
  PyObject* index_ptr =
      !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index_ptr);
      VLOG(4) << "Call Py_DECREF";
    }
  });

  // 1. Check argumnets
  bool parse_index = true;

  // Check whether _index can be parsed.
  const int size = PyTuple_GET_SIZE(index_ptr);
  for (int dim = 0; dim < size; ++dim) {
    PyObject* slice_item = PyTuple_GetItem(index_ptr, dim);
    if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
          slice_item == Py_Ellipsis || slice_item == Py_None)) {
      parse_index = false;
      break;
    }
  }

  // 2. Call op set_value to speed up if the condition is met,
  // otherwise call TensorToPyArray.
  // TODO(liym27): Try not to call TensorToPyArray because it always
  // copys data to cpu place, which reduces performance.
  if (parse_index) {
    std::vector<int> axes, starts, ends, steps, decrease_axes, none_axes,
        infer_flags, list_select_idxs;
    // if index is a list, list_select_flag will be true
    bool list_select_flag = false;
    ParseIndexingSlice(self_tensor, index_ptr, &axes, &starts, &ends, &steps,
                       &decrease_axes, &none_axes, &infer_flags,
                       &list_select_idxs, &list_select_flag);

    framework::AttributeMap attrs = {{"axes", axes},
                                     {"starts", starts},
                                     {"ends", ends},
                                     {"steps", steps},
                                     {"decrease_axes", decrease_axes},
                                     {"none_axes", none_axes}};

    if (egr::Controller::Instance().HasGrad()) {
      PADDLE_ENFORCE_EQ(
          egr::egr_utils_api::IsLeafTensor(self->tensor) &&
              !egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient(),
          false, platform::errors::InvalidArgument(
                     "Leaf Tensor (%s) that doesn't stop gradient can't use "
                     "inplace strategy.",
                     self->tensor.name()));
    }

    paddle::experimental::Tensor value_tensor;

    if (PyCheckTensor(value_obj)) {
      value_tensor = reinterpret_cast<TensorObject*>(value_obj)->tensor;
    } else if (py::isinstance<py::array>(value_obj)) {
      paddle::experimental::Tensor value_tensor_tmp(
          std::make_shared<phi::DenseTensor>(),
          egr::Controller::Instance().GenerateUniqueName());
      py::object value_obj_tmp(py::handle(value_obj), true);
      py::object value = value_obj_tmp;
      if (self->tensor.dtype() == paddle::experimental::DataType::FLOAT32) {
        if (!py::isinstance<py::array_t<float>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<float>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::FLOAT64) {
        if (!py::isinstance<py::array_t<double>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<double>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::INT32) {
        if (!py::isinstance<py::array_t<int32_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int32_t>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::INT64) {
        if (!py::isinstance<py::array_t<int64_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int64_t>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() == paddle::experimental::DataType::BOOL) {
        if (!py::isinstance<py::array_t<bool>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<bool>(value_obj_tmp);
        }
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "When assign a numpy.np value to a paddle.Tensor, "
            "the data type of the paddle.Tensor must be bool, "
            "float32, int32 or int64, "
            "please check the type of tensor."));
      }

      if (value_tensor_tmp.place() == paddle::PlaceType::kUNK) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
        SetTensorFromPyArray(
            static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
            value, platform::Place(platform::CUDAPlace(0)), false);
#else
        SetTensorFromPyArray(
            static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
            value, platform::Place(platform::CPUPlace()), false);
#endif
      } else {
        SetTensorFromPyArray(
            static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
            value, value_tensor_tmp.inner_place(), false);
      }

      value_tensor = value_tensor_tmp;
    } else {
      py::object value_obj_tmp(py::handle(value_obj), true);
      // convert the value to self data type
      if (py::isinstance<py::float_>(value_obj_tmp) ||
          py::isinstance<py::int_>(value_obj_tmp) ||
          py::isinstance<py::bool_>(value_obj_tmp)) {
        if (self->tensor.dtype() == paddle::experimental::DataType::FLOAT32) {
          attrs["fp32_values"] =
              std::vector<float>{value_obj_tmp.cast<float>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::FLOAT64) {
          attrs["fp64_values"] =
              std::vector<double>{value_obj_tmp.cast<double>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::INT32) {
          attrs["int32_values"] =
              std::vector<int32_t>{value_obj_tmp.cast<int32_t>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::INT64) {
          attrs["int64_values"] =
              std::vector<int64_t>{value_obj_tmp.cast<int64_t>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::BOOL) {
          attrs["bool_values"] = std::vector<int>{value_obj_tmp.cast<bool>()};
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "When assign a value to a paddle.Tensor, "
              "the data type of the paddle.Tensor must be bool, "
              "float32, int32 or int64, "
              "please check the type of tensor."));
        }
        attrs["shape"] = std::vector<int64_t>{1};

      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Value type error. The assign value allows "
            "numpy.ndarray, integer, float or bool, "
            "but received %s.",
            Py_TYPE(value_obj)));
      }
    }

    {
      // Release gil and do tracing
      py::gil_scoped_release release;
983 984 985 986 987 988 989 990 991 992 993 994
      // use inplace set_value_ operator
      self->tensor = set_value__dygraph_function(self->tensor, value_tensor, {},
                                                 {}, {}, attrs);
    }
    if (PyCheckTensor(value_obj)) {
      // pass the stop_gradient from value to tensor.
      // pass stop gradient should be done after CheckInplace in
      // set_value__dygraph_function.
      if (!egr::EagerUtils::autograd_meta(&value_tensor)->StopGradient() &&
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient()) {
        egr::EagerUtils::autograd_meta(&self->tensor)->SetStopGradient(false);
      }
W
wanghuancoder 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
    }
  } else {
    auto self_numpy = TensorToPyArray(*self_tensor);
    VLOG(4) << "parse_index is false";
    if (PyCheckTensor(_index)) {
      VLOG(4) << "index is tensor";
      auto index_tensor = static_cast<phi::DenseTensor*>(
          reinterpret_cast<TensorObject*>(_index)->tensor.impl().get());
      auto index_numpy = TensorToPyArray(*index_tensor);
      self_numpy[index_numpy] = py::object(py::handle(value_obj), true);
    } else {
      VLOG(4) << "index is not tensor";
      self_numpy[_index] = py::object(py::handle(value_obj), true);
    }
    if (self->tensor.place() == paddle::PlaceType::kUNK) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      SetTensorFromPyArray(self_tensor, self_numpy,
                           platform::Place(platform::CUDAPlace(0)), false);
#else
      SetTensorFromPyArray(self_tensor, self_numpy,
                           platform::Place(platform::CPUPlace()), false);
#endif
    } else {
      SetTensorFromPyArray(self_tensor, self_numpy, self->tensor.inner_place(),
                           false);
    }
  }
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1027 1028 1029 1030 1031 1032
static PyObject* tensor_register_grad_hook(TensorObject* self, PyObject* args,
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

    auto autograd_meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);

    if (autograd_meta && !autograd_meta->StopGradient()) {
      if (!autograd_meta->GetMutableGradNode()) {
        VLOG(6) << "Detected NULL grad_node, Leaf tensor should have had "
                   "grad_node with type: GradNodeAccumulation.";
        autograd_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
      }
    }

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();
    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
        rank_info.first, rank_info.second,
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
        rank_info.first, rank_info.second,
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_remove_grad_hook(TensorObject* self, PyObject* args,
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_register_reduce_hook(TensorObject* self, PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
  PADDLE_ENFORCE_EQ(egr::egr_utils_api::IsLeafTensor(self->tensor), true,
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
      true, platform::errors::InvalidArgument(
                "Cannot register backward hook on a Tensor that stop "
                "gradient."));
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
      paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
      std::make_shared<PyTensorVoidHook>(hook_func));

  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
1119 1120
static PyObject* tensor__set_grad_type(TensorObject* self, PyObject* args,
                                       PyObject* kwargs) {
1121 1122 1123
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
1124
      egr::EagerUtils::autograd_meta(&self->tensor)->MutableGrad();
1125
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
1126
    grad_tensor->set_impl(std::make_shared<phi::DenseTensor>());
1127
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
1128
    grad_tensor->set_impl(std::make_shared<phi::SelectedRows>());
1129 1130 1131 1132 1133
  }
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
static PyObject* tensor__clear(TensorObject* self, PyObject* args,
                               PyObject* kwargs) {
  EAGER_TRY
  self->tensor.reset();
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor__copy_gradient_from(TensorObject* self, PyObject* args,
                                            PyObject* kwargs) {
  EAGER_TRY
  auto src = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  if (self->tensor.is_initialized()) {
    PADDLE_ENFORCE_EQ(self->tensor.dtype(), src.dtype(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
                          self->tensor.name(), src.name()));
    PADDLE_ENFORCE_EQ(self->tensor.impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
                          self->tensor.name(), src.name()));
  }
  VLOG(6) << "Tensor copy gradient from: " << src.name();
  auto* p_grad = egr::EagerUtils::mutable_grad(self->tensor);
  if (p_grad) {
    PADDLE_ENFORCE_EQ(src.initialized(), true,
                      platform::errors::InvalidArgument(
                          "Tensor %s has not been initialized", src.name()));
    p_grad->set_impl(src.impl());
  }
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_coo_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCooTensor"));
  auto sparse_coo_tensor =
      std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
  paddle::experimental::Tensor tensor(std::make_shared<phi::DenseTensor>(
      sparse_coo_tensor->non_zero_indices()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    paddle::experimental::Tensor tensor(std::make_shared<phi::DenseTensor>(
        sparse_coo_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    paddle::experimental::Tensor tensor(std::make_shared<phi::DenseTensor>(
        sparse_csr_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
  paddle::experimental::Tensor tensor(
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_crows()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
  paddle::experimental::Tensor tensor(
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_cols()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_is_sparse(TensorObject* self, PyObject* args,
                                         PyObject* kwargs) {
  EAGER_TRY
1243 1244 1245
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1246 1247 1248 1249 1250 1251 1252 1253
  return ToPyObject(self->tensor.is_sparse_coo_tensor() ||
                    self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_is_sparse_coo(TensorObject* self, PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
1254 1255 1256
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1257 1258 1259 1260 1261 1262 1263
  return ToPyObject(self->tensor.is_sparse_coo_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_is_sparse_csr(TensorObject* self, PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
1264 1265 1266
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1267 1268 1269 1270
  return ToPyObject(self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
static PyObject* tensor_method_to_sparse_coo(TensorObject* self, PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  int64_t sparse_dim = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
  auto coo_tensor = self->tensor.to_sparse_coo(sparse_dim);
  egr::EagerUtils::autograd_meta(&coo_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&coo_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(coo_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_to_sparse_csr(TensorObject* self, PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto csr_tensor = self->tensor.to_sparse_csr();
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(csr_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_to_dense(TensorObject* self, PyObject* args,
                                        PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor = self->tensor.to_dense();
  egr::EagerUtils::autograd_meta(&dense_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&dense_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(dense_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1314 1315 1316 1317 1318 1319 1320 1321 1322
static PyObject* tensor__inplace_version(TensorObject* self, PyObject* args,
                                         PyObject* kwargs) {
  EAGER_TRY
  uint32_t inplace_version = self->tensor.current_inplace_version();

  return ToPyObject(inplace_version);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1323 1324 1325 1326 1327 1328 1329 1330 1331
static PyObject* tensor_method_element_size(TensorObject* self, PyObject* args,
                                            PyObject* kwargs) {
  EAGER_TRY
  uint32_t element_size = framework::DataTypeSize(self->tensor.dtype());

  return ToPyObject(element_size);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1332 1333 1334 1335 1336 1337 1338 1339 1340
static PyObject* tensor__bump_inplace_version(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  self->tensor.bump_inplace_version();
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1341 1342 1343 1344
static PyObject* tensor_method_is_selected_rows(TensorObject* self,
                                                PyObject* args,
                                                PyObject* kwargs) {
  EAGER_TRY
1345 1346 1347
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
  return ToPyObject(self->tensor.is_selected_rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_rows(TensorObject* self, PyObject* args,
                                        PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows"));
  auto selected_rows =
      std::dynamic_pointer_cast<phi::SelectedRows>(self->tensor.impl());
  return ToPyObject(selected_rows->rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1364 1365 1366 1367 1368 1369 1370
static PyObject* tensor_methon_element_size(TensorObject* self, PyObject* args,
                                            PyObject* kwargs) {
  EAGER_TRY
  return ToPyObject(paddle::experimental::SizeOf(self->tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
  if (grad && grad->defined() && grad->is_dense_tensor() &&
      grad->initialized()) {
    grad->reset_inplace_version(set_to_zero);
  }
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
static PyObject* tensor__offset(TensorObject* self, PyObject* args,
                                PyObject* kwargs) {
  EAGER_TRY
  auto t = std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  PADDLE_ENFORCE_EQ(
      t->IsInitialized(), true,
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  return ToPyObject(t->offset());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1405 1406 1407 1408 1409
#if defined(PADDLE_WITH_CUDA)
static PyObject* tensor_method__uva(TensorObject* self, PyObject* args,
                                    PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in tensor_method__uva.";
W
Weilong Wu 已提交
1410 1411 1412 1413
  PADDLE_ENFORCE_EQ(self->tensor.is_dense_tensor(), true,
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "DenseTensor currently."));
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.inner_place()), true,
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "CPU Tensor currently."));
  int device_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
  auto* self_tensor =
      static_cast<paddle::framework::LoDTensor*>(self->tensor.impl().get());
  tensor_uva(self_tensor, device_id);

  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
#endif

1429
PyMethodDef variable_methods[] = {
1430
    {"numpy", (PyCFunction)(void (*)(void))tensor_method_numpy,
1431 1432
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_is_initialized",
1433
     (PyCFunction)(void (*)(void))tensor_method__is_initialized,
1434
     METH_VARARGS | METH_KEYWORDS, NULL},
W
wanghuancoder 已提交
1435 1436 1437 1438
    {"_is_dense_tensor_hold_allocation",
     (PyCFunction)(
         void (*)(void))tensor_method__is_dense_tensor_hold_allocation,
     METH_VARARGS | METH_KEYWORDS, NULL},
1439
    {"_copy_to", (PyCFunction)(void (*)(void))tensor_method__copy_to,
1440
     METH_VARARGS | METH_KEYWORDS, NULL},
1441
    {"copy_", (PyCFunction)(void (*)(void))tensor_method_copy_,
1442
     METH_VARARGS | METH_KEYWORDS, NULL},
1443
    {"reconstruct_from_",
1444
     (PyCFunction)(void (*)(void))tensor_method_reconstruct_from_,
1445
     METH_VARARGS | METH_KEYWORDS, NULL},
1446
    {"retain_grads", (PyCFunction)(void (*)(void))tensor_retain_grads,
1447
     METH_VARARGS | METH_KEYWORDS, NULL},
1448
    {"clear_gradient", (PyCFunction)(void (*)(void))tensor_clear_gradient,
1449
     METH_VARARGS | METH_KEYWORDS, NULL},
1450
    {"_zero_grads", (PyCFunction)(void (*)(void))tensor__zero_grads,
1451
     METH_VARARGS | METH_KEYWORDS, NULL},
1452
    {"_share_buffer_to", (PyCFunction)(void (*)(void))tensor__share_buffer_to,
1453
     METH_VARARGS | METH_KEYWORDS, NULL},
1454
    {"_is_shared_buffer_with",
1455
     (PyCFunction)(void (*)(void))tensor__is_shared_buffer_with,
1456
     METH_VARARGS | METH_KEYWORDS, NULL},
1457
    {"_share_underline_tensor_to",
1458
     (PyCFunction)(void (*)(void))tensor__share_underline_tensor_to,
1459 1460
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_is_shared_underline_tensor_with",
1461
     (PyCFunction)(void (*)(void))tensor__is_shared_underline_tensor_with,
1462
     METH_VARARGS | METH_KEYWORDS, NULL},
1463
    {"detach", (PyCFunction)(void (*)(void))tensor_method_detach,
1464
     METH_VARARGS | METH_KEYWORDS, NULL},
1465
    {"get_tensor",
1466
     (PyCFunction)(void (*)(void))tensor_method_get_underline_tensor,
1467
     METH_VARARGS | METH_KEYWORDS, NULL},
1468 1469 1470
    {"get_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method_get_underline_selected_rows,
     METH_VARARGS | METH_KEYWORDS, NULL},
J
Jiabin Yang 已提交
1471 1472
    {"_getitem_index_not_tensor",
     (PyCFunction)(void (*)(void))tensor__getitem_index_not_tensor,
1473
     METH_VARARGS | METH_KEYWORDS, NULL},
W
wanghuancoder 已提交
1474 1475 1476
    {"_getitem_from_offset",
     (PyCFunction)(void (*)(void))tensor__getitem_from_offset,
     METH_VARARGS | METH_KEYWORDS, NULL},
W
wanghuancoder 已提交
1477 1478 1479
    {"__setitem_eager_tensor__",
     (PyCFunction)(void (*)(void))tensor_method__setitem_eager_tensor,
     METH_VARARGS | METH_KEYWORDS, NULL},
1480 1481 1482 1483 1484 1485 1486 1487
    {"_register_grad_hook",
     (PyCFunction)(void (*)(void))tensor_register_grad_hook,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_remove_grad_hook", (PyCFunction)(void (*)(void))tensor_remove_grad_hook,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_register_backward_hook",
     (PyCFunction)(void (*)(void))tensor_register_reduce_hook,
     METH_VARARGS | METH_KEYWORDS, NULL},
J
Jiabin Yang 已提交
1488 1489 1490 1491 1492 1493
    {"_set_grad_type", (PyCFunction)(void (*)(void))tensor__set_grad_type,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_clear", (PyCFunction)(void (*)(void))tensor__clear,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_copy_gradient_from",
     (PyCFunction)(void (*)(void))tensor__copy_gradient_from,
1494
     METH_VARARGS | METH_KEYWORDS, NULL},
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
    /***the method of sparse tensor****/
    {"non_zero_indices",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_indices,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"non_zero_elements",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_elements,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"non_zero_crows",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_crows,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"non_zero_cols",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_cols,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"is_sparse", (PyCFunction)(void (*)(void))tensor_method_is_sparse,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"is_sparse_coo", (PyCFunction)(void (*)(void))tensor_method_is_sparse_coo,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"is_sparse_csr", (PyCFunction)(void (*)(void))tensor_method_is_sparse_csr,
     METH_VARARGS | METH_KEYWORDS, NULL},
1514 1515 1516 1517 1518 1519
    {"to_sparse_coo", (PyCFunction)(void (*)(void))tensor_method_to_sparse_coo,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"to_sparse_csr", (PyCFunction)(void (*)(void))tensor_method_to_sparse_csr,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"to_dense", (PyCFunction)(void (*)(void))tensor_method_to_dense,
     METH_VARARGS | METH_KEYWORDS, NULL},
1520 1521
    {"element_size", (PyCFunction)(void (*)(void))tensor_method_element_size,
     METH_VARARGS | METH_KEYWORDS, NULL},
1522
    /***the method of sparse tensor****/
1523 1524
    {"_inplace_version", (PyCFunction)(void (*)(void))tensor__inplace_version,
     METH_VARARGS | METH_KEYWORDS, NULL},
1525 1526 1527
    {"_bump_inplace_version",
     (PyCFunction)(void (*)(void))tensor__bump_inplace_version,
     METH_VARARGS | METH_KEYWORDS, NULL},
1528 1529 1530 1531 1532
    {"is_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method_is_selected_rows,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"rows", (PyCFunction)(void (*)(void))tensor_method_get_rows,
     METH_VARARGS | METH_KEYWORDS, NULL},
1533 1534
    {"element_size", (PyCFunction)(void (*)(void))tensor_methon_element_size,
     METH_VARARGS | METH_KEYWORDS, NULL},
1535 1536 1537
    {"_reset_grad_inplace_version",
     (PyCFunction)(void (*)(void))tensor__reset_grad_inplace_version,
     METH_VARARGS | METH_KEYWORDS, NULL},
1538 1539
    {"_offset", (PyCFunction)(void (*)(void))tensor__offset,
     METH_VARARGS | METH_KEYWORDS, NULL},
1540 1541 1542 1543
#if defined(PADDLE_WITH_CUDA)
    {"_tensor_uva", (PyCFunction)(void (*)(void))tensor_method__uva,
     METH_VARARGS | METH_KEYWORDS, NULL},
#endif
1544 1545 1546 1547
    {NULL, NULL, 0, NULL}};

}  // namespace pybind
}  // namespace paddle