slice_op.h 15.7 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
17
#include <utility>
W
whs 已提交
18 19
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
20
#include "paddle/fluid/operators/math/math_function.h"
21
#include "paddle/fluid/operators/utils.h"
W
whs 已提交
22 23 24

namespace paddle {
namespace operators {
25 26
using Tensor = framework::Tensor;

W
whs 已提交
27 28 29 30
template <typename DeviceContext, typename T>
class SliceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
31 32 33 34 35 36
    const framework::Variable* input_var = ctx.InputVar("Input");
    bool is_tensor_array = input_var->IsType<framework::LoDTensorArray>();
    int rank = is_tensor_array
                   ? 1
                   : ctx.Input<framework::Tensor>("Input")->dims().size();

W
whs 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    switch (rank) {
      case 1:
        SliceCompute<1>(ctx);
        break;
      case 2:
        SliceCompute<2>(ctx);
        break;
      case 3:
        SliceCompute<3>(ctx);
        break;
      case 4:
        SliceCompute<4>(ctx);
        break;
      case 5:
        SliceCompute<5>(ctx);
        break;
      case 6:
        SliceCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void SliceCompute(const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
64 65 66 67
    const framework::Variable* input_var = context.InputVar("Input");
    framework::Variable* out_var = context.OutputVar("Out");
    bool input_is_tensor_array = input_var->IsType<framework::LoDTensorArray>();
    bool out_is_tensor_array = out_var->IsType<framework::LoDTensorArray>();
H
Hongyu Liu 已提交
68

69
    auto axes = context.Attr<std::vector<int>>("axes");
70

71 72 73 74
    auto starts_int = context.Attr<std::vector<int>>("starts");
    std::vector<int64_t> starts(starts_int.begin(), starts_int.end());
    auto ends_int = context.Attr<std::vector<int>>("ends");
    std::vector<int64_t> ends(ends_int.begin(), ends_int.end());
H
Hongyu Liu 已提交
75
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    auto infer_flags = context.Attr<std::vector<int>>("infer_flags");
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");

    bool need_infer = false;
    if (context.HasInput("StartsTensor") || context.HasInput("EndsTensor")) {
      need_infer = true;
    }
    if (list_new_starts_tensor.size() > 0 || list_new_ends_tensor.size() > 0) {
      need_infer = true;
    }
    if (need_infer) {
      if (context.HasInput("StartsTensor")) {
        auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
92
        starts = GetDataFromTensor<int64_t>(starts_tensor);
93
      } else if (list_new_starts_tensor.size() > 0) {
94
        starts = GetDataFromTensorList<int64_t>(list_new_starts_tensor);
95 96 97
      }
      if (context.HasInput("EndsTensor")) {
        auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
98
        ends = GetDataFromTensor<int64_t>(ends_tensor);
99
      } else if (list_new_ends_tensor.size() > 0) {
100
        ends = GetDataFromTensorList<int64_t>(list_new_ends_tensor);
101
      }
102 103 104 105 106 107 108 109 110 111 112 113
    }
    PADDLE_ENFORCE_EQ(
        starts.size(), axes.size(),
        platform::errors::InvalidArgument(
            "The size of starts must be equal to the size of axes."));
    PADDLE_ENFORCE_EQ(
        ends.size(), axes.size(),
        platform::errors::InvalidArgument(
            "The size of ends must be equal to the size of axes."));
    if (input_is_tensor_array) {
      auto in_array = context.Input<framework::LoDTensorArray>("Input");
      // If the input is LoDTensorArray, the rank of input is 1.
114 115 116 117 118 119
      int64_t in_size = in_array->size();
      int64_t start = starts[0] < 0 ? (starts[0] + in_size) : starts[0];
      int64_t end = ends[0] < 0 ? (ends[0] + in_size) : ends[0];

      start = std::max(start, static_cast<int64_t>(0));
      end = std::max(end, static_cast<int64_t>(0));
120 121 122 123 124 125 126
      end = std::min(end, in_size);

      PADDLE_ENFORCE_GT(end, start,
                        platform::errors::InvalidArgument(
                            "Attr(ends) should be greater than attr(starts) in "
                            "slice op. But received ends = %d, starts = %d.",
                            end, start));
127
      int64_t out_size = end - start;
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

      if (out_is_tensor_array) {
        auto out_array = context.Output<framework::LoDTensorArray>("Out");
        out_array->resize(out_size);

        for (int i = 0; i < out_size; ++i) {
          auto* out_tensor = &out_array->at(i);
          auto in_tensor = in_array->at(i + start);
          out_tensor->set_lod(in_tensor.lod());
          if (in_tensor.memory_size() > 0) {
            TensorCopy(in_tensor, context.GetPlace(), out_tensor);
          } else {
            VLOG(10)
                << "WARNING: The input tensor 'x_tensor' holds no memory, so "
                   "nothing has been written to output array["
                << i << "].";
          }
        }
      } else {
        auto out = context.Output<framework::Tensor>("Out");
        auto in_tensor = in_array->at(start);
        TensorCopy(in_tensor, context.GetPlace(), out);
      }

      return;
    }

    auto in = context.Input<framework::Tensor>("Input");
    auto out = context.Output<framework::Tensor>("Out");

    auto out_dims = out->dims();
    auto in_dims = in->dims();
    if (need_infer) {
161
      out_dims = in_dims;
162
      int64_t dim_value, start, end;
163 164 165 166 167 168 169 170 171 172 173 174 175 176
      for (size_t i = 0; i < axes.size(); ++i) {
        dim_value = out_dims[axes[i]];
        if (dim_value > 0) {
          // when end = start+1 and start == -1
          if (starts[i] == -1 && ends[i] == 0 && infer_flags[i] == -1) {
            auto ret =
                std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
            if (ret != decrease_axis.end()) {
              ends[i] = 10000000;
            }
          }

          start = starts[i] < 0 ? (starts[i] + dim_value) : starts[i];
          end = ends[i] < 0 ? (ends[i] + dim_value) : ends[i];
177 178
          start = std::max(start, static_cast<int64_t>(0));
          end = std::max(end, static_cast<int64_t>(0));
179
          end = std::min(end, dim_value);
180 181 182 183 184 185
          PADDLE_ENFORCE_GT(
              end, start,
              platform::errors::InvalidArgument(
                  "Attr(ends) should be greater than attr(starts) in "
                  "slice op. But received ends = %d, starts = %d.",
                  end, start));
186 187 188 189 190 191
          out_dims[axes[i]] = end - start;
        }
      }
      out->Resize(out_dims);
      // generate new shape
      if (decrease_axis.size() > 0) {
192
        std::vector<int64_t> new_out_shape;
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        for (size_t i = 0; i < decrease_axis.size(); ++i) {
          PADDLE_ENFORCE_EQ(out_dims[decrease_axis[i]], 1,
                            "decrease dim should be 1");
          out_dims[decrease_axis[i]] = 0;
        }

        for (int i = 0; i < out_dims.size(); ++i) {
          if (out_dims[i] != 0) {
            new_out_shape.push_back(out_dims[i]);
          }
        }
        if (new_out_shape.size() == 0) {
          new_out_shape.push_back(1);
        }

        out_dims = framework::make_ddim(new_out_shape);
      }
    }

    // resize out_dims
H
Hongyu Liu 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    if (decrease_axis.size() > 0) {
      if (decrease_axis.size() == (size_t)in_dims.size()) {
        std::vector<int> vec_origin_out_shape(decrease_axis.size(), 1);
        out->Resize(framework::make_ddim(vec_origin_out_shape));
      } else {
        std::vector<int> vec_origin_out_shape(
            out_dims.size() + decrease_axis.size(), -1);

        for (size_t i = 0; i < decrease_axis.size(); ++i) {
          vec_origin_out_shape[decrease_axis[i]] = 1;
        }

        int index = 0;
        for (size_t i = 0; i < vec_origin_out_shape.size(); ++i) {
          if (vec_origin_out_shape[i] == -1) {
            vec_origin_out_shape[i] = out_dims[index];
            ++index;
          }
        }

        out->Resize(framework::make_ddim(vec_origin_out_shape));
      }
    }

    out->mutable_data<T>(context.GetPlace());
W
whs 已提交
238

H
Hongyu Liu 已提交
239
    auto new_out_dims = out->dims();
240 241
    auto offsets = Eigen::array<int64_t, D>();
    auto extents = Eigen::array<int64_t, D>();
W
whs 已提交
242 243
    for (size_t i = 0; i < D; ++i) {
      offsets[i] = 0;
H
Hongyu Liu 已提交
244
      extents[i] = new_out_dims[i];
W
whs 已提交
245
    }
246
    int64_t start;
W
whs 已提交
247 248 249 250 251
    for (size_t i = 0; i < axes.size(); ++i) {
      start = starts[i];
      if (start < 0) {
        start = (start + in_dims[axes[i]]);
      }
252
      start = std::max(start, static_cast<int64_t>(0));
W
whs 已提交
253 254 255 256 257 258 259
      offsets[axes[i]] = start;
    }
    auto in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *in);
    auto out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
H
Hongyu Liu 已提交
260
            *out, new_out_dims);
W
whs 已提交
261
    out_t.device(place) = in_t.slice(offsets, extents);
H
Hongyu Liu 已提交
262 263

    out->Resize(out_dims);
W
whs 已提交
264 265
  }
};
266 267 268 269 270

template <typename DeviceContext, typename T>
class SliceGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
271 272 273 274 275 276
    const framework::Variable* input_var = ctx.InputVar("Input");
    bool is_tensor_array = input_var->IsType<framework::LoDTensorArray>();
    size_t rank = is_tensor_array
                      ? 1
                      : ctx.Input<framework::Tensor>("Input")->dims().size();

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    switch (rank) {
      case 1:
        SliceCompute<1>(ctx);
        break;
      case 2:
        SliceCompute<2>(ctx);
        break;
      case 3:
        SliceCompute<3>(ctx);
        break;
      case 4:
        SliceCompute<4>(ctx);
        break;
      case 5:
        SliceCompute<5>(ctx);
        break;
      case 6:
        SliceCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void SliceCompute(const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto axes = context.Attr<std::vector<int>>("axes");
305 306 307 308 309 310 311

    auto starts_int = context.Attr<std::vector<int>>("starts");
    std::vector<int64_t> starts(starts_int.begin(), starts_int.end());

    auto ends_int = context.Attr<std::vector<int>>("ends");
    std::vector<int64_t> ends(ends_int.begin(), ends_int.end());

312 313 314 315 316 317
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");

    if (list_new_starts_tensor.size() > 0) {
318
      starts = GetDataFromTensorList<int64_t>(list_new_starts_tensor);
319 320
    } else if (context.HasInput("StartsTensor")) {
      auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
321
      starts = GetDataFromTensor<int64_t>(starts_tensor);
322 323 324
    }

    if (list_new_ends_tensor.size() > 0) {
325
      ends = GetDataFromTensorList<int64_t>(list_new_ends_tensor);
326 327
    } else if (context.HasInput("EndsTensor")) {
      auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
328
      ends = GetDataFromTensor<int64_t>(ends_tensor);
329
    }
330 331 332 333 334 335 336 337 338 339 340 341 342
    framework::Variable* d_input_var =
        context.OutputVar(framework::GradVarName("Input"));
    const framework::Variable* d_out_var =
        context.InputVar(framework::GradVarName("Out"));
    bool d_input_is_tensor_array =
        d_input_var->IsType<framework::LoDTensorArray>();
    bool d_out_is_tensor_array = d_out_var->IsType<framework::LoDTensorArray>();

    if (d_input_is_tensor_array) {
      auto* input_array = context.Input<framework::LoDTensorArray>("Input");
      auto* d_input_array = context.Output<framework::LoDTensorArray>(
          framework::GradVarName("Input"));

343
      int64_t d_in_size = input_array->size();
344 345 346
      d_input_array->resize(d_in_size);
      // If the input is LoDTensorArray, the rank of input is 1.
      // So only use the 0th element of starts.
347 348
      int64_t start = starts[0] < 0 ? (starts[0] + d_in_size) : starts[0];
      start = std::max(start, static_cast<int64_t>(0));
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
      // set zero
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      auto& dev_ctx = *pool.Get(context.GetPlace());
      T value = 0.0;
      math::SetConstant<DeviceContext, T> functor;
      for (int i = 0; i < d_in_size; ++i) {
        auto dim = input_array->at(i).dims();
        d_input_array->at(i).Resize(dim);
        d_input_array->at(i).mutable_data<T>(context.GetPlace());
        functor(reinterpret_cast<const DeviceContext&>(dev_ctx),
                &d_input_array->at(i), static_cast<T>(value));
      }

      if (d_out_is_tensor_array) {
        auto* d_out_array = context.Input<framework::LoDTensorArray>(
            framework::GradVarName("Out"));
        int d_out_size = d_out_array->size();
        for (int i = 0; i < d_out_size; ++i) {
          TensorCopy(d_out_array->at(i), context.GetPlace(),
                     &(d_input_array->at(start + i)));
        }

      } else {
        auto* d_out =
            context.Input<framework::Tensor>(framework::GradVarName("Out"));
        TensorCopy(*d_out, context.GetPlace(), &(d_input_array->at(start)));
      }
      return;
    }

    auto* d_out =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));

    auto* d_input =
        context.Output<framework::Tensor>(framework::GradVarName("Input"));

    d_input->mutable_data<T>(context.GetPlace());

    auto out_dims = d_out->dims();
    auto in_dims = d_input->dims();
390

H
Hongyu Liu 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
    if (decrease_axis.size() > 0) {
      if (decrease_axis.size() == (size_t)in_dims.size()) {
        // all dims decrease
        std::vector<int> vec_origin_out_shape(decrease_axis.size(), 1);
        out_dims = framework::make_ddim(vec_origin_out_shape);
      } else {
        std::vector<int> vec_origin_out_shape(
            out_dims.size() + decrease_axis.size(), -1);

        for (size_t i = 0; i < decrease_axis.size(); ++i) {
          vec_origin_out_shape[decrease_axis[i]] = 1;
        }

        int index = 0;
        for (size_t i = 0; i < vec_origin_out_shape.size(); ++i) {
          if (vec_origin_out_shape[i] == -1) {
            vec_origin_out_shape[i] = out_dims[index];
            ++index;
          }
        }

        out_dims = framework::make_ddim(vec_origin_out_shape);
      }
    }

417 418
    auto offsets = Eigen::array<int64_t, D>();
    auto extents = Eigen::array<int64_t, D>();
419 420 421 422
    for (size_t i = 0; i < D; ++i) {
      offsets[i] = 0;
      extents[i] = out_dims[i];
    }
423
    int64_t start;
424 425 426 427 428
    for (size_t i = 0; i < axes.size(); ++i) {
      start = starts[i];
      if (start < 0) {
        start = (start + in_dims[axes[i]]);
      }
429
      start = std::max(start, static_cast<int64_t>(0));
430 431
      offsets[axes[i]] = start;
    }
432
    Eigen::array<std::pair<int64_t, int64_t>, D> paddings;
433 434 435 436 437 438 439 440 441
    for (size_t i = 0; i < paddings.size(); ++i) {
      paddings[i].first = offsets[i];
      paddings[i].second = (in_dims[i] - out_dims[i]) - offsets[i];
    }
    auto d_in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *d_input);
    auto d_out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
H
Hongyu Liu 已提交
442
            *d_out, out_dims);
443 444 445
    d_in_t.device(place) = d_out_t.pad(paddings, 0);
  }
};
W
whs 已提交
446 447
}  // namespace operators
}  // namespace paddle