yolov3_loss_op.h 13.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

using Array2 = Eigen::DSizes<int64_t, 2>;
using Array4 = Eigen::DSizes<int64_t, 4>;

template <typename T>
static inline bool isZero(T x) {
  return abs(x) < 1e-6;
}

template <typename T>
static inline T sigmod(T x) {
  return 1.0 / (exp(-1.0 * x) + 1.0);
}

template <typename T>
static inline T CalcMSEWithMask(const Tensor& x, const Tensor& y,
                                const Tensor& mask) {
  auto x_t = EigenVector<T>::Flatten(x);
  auto y_t = EigenVector<T>::Flatten(y);
  auto mask_t = EigenVector<T>::Flatten(mask);
  auto result = ((x_t - y_t) * mask_t).pow(2).sum().eval();
  return result(0);
}

template <typename T>
static inline T CalcBCEWithMask(const Tensor& x, const Tensor& y,
                                const Tensor& mask) {
  auto x_t = EigenVector<T>::Flatten(x);
  auto y_t = EigenVector<T>::Flatten(y);
  auto mask_t = EigenVector<T>::Flatten(mask);

  auto result =
      ((y_t * (x_t.log()) + (1.0 - y_t) * ((1.0 - x_t).log())) * mask_t)
          .sum()
          .eval();
  return result;
}

template <typename T>
static inline T CalcCEWithMask(const Tensor& x, const Tensor& y,
                               const Tensor& mask) {
  auto x_t = EigenVector<T>::Flatten(x);
  auto y_t = EigenVector<T>::Flatten(y);
  auto mask_t = EigenVector<T>::Flatten(mask);
}

template <typename T>
static void CalcPredResult(const Tensor& input, Tensor* pred_boxes,
                           Tensor* pred_confs, Tensor* pred_classes,
                           Tensor* pred_x, Tensor* pred_y, Tensor* pred_w,
                           Tensor* pred_h, std::vector<int> anchors,
                           const int class_num, const int stride) {
  const int n = input.dims()[0];
  const int c = input.dims()[1];
  const int h = input.dims()[2];
  const int w = input.dims()[3];
  const int anchor_num = anchors.size() / 2;
  const int box_attr_num = 5 + class_num;

  auto input_t = EigenTensor<T, 4>::From(input);
  auto pred_boxes_t = EigenTensor<T, 5>::From(*pred_boxes);
  auto pred_confs_t = EigenTensor<T, 4>::From(*pred_confs);
  auto pred_classes_t = EigenTensor<T, 5>::From(*pred_classes);
  auto pred_x_t = EigenTensor<T, 4>::From(*pred_x);
  auto pred_y_t = EigenTensor<T, 4>::From(*pred_y);
  auto pred_w_t = EigenTensor<T, 4>::From(*pred_w);
  auto pred_h_t = EigenTensor<T, 4>::From(*pred_h);

  for (int i = 0; i < n; i++) {
    for (int an_idx = 0; an_idx < anchor_num; an_idx++) {
      float an_w = anchors[an_idx * 2] / stride;
      float an_h = anchors[an_idx * 2 + 1] / stride;

      for (int j = 0; j < h; j++) {
        for (int k = 0; k < w; k++) {
          pred_x_t(i, an_idx, j, k) =
              sigmod(input_t(i, box_attr_num * an_idx, j, k));
          pred_y_t(i, an_idx, j, k) =
              sigmod(input_t(i, box_attr_num * an_idx + 1, j, k));
          pred_w_t(i, an_idx, j, k) =
              sigmod(input_t(i, box_attr_num * an_idx + 2, j, k));
          pred_h_t(i, an_idx, j, k) =
              sigmod(input_t(i, box_attr_num * an_idx + 3, j, k));

          pred_boxes_t(i, an_idx, j, k, 0) = pred_x_t(i, an_idx, j, k) + k;
          pred_boxes_t(i, an_idx, j, k, 1) = pred_y_t(i, an_idx, j, k) + j;
          pred_boxes_t(i, an_idx, j, k, 2) =
              exp(pred_w_t(i, an_idx, j, k)) * an_w;
          pred_boxes_t(i, an_idx, j, k, 3) =
              exp(pred_h_t(i, an_idx, j, k)) * an_h;

          pred_confs_t(i, an_idx, j, k) =
              sigmod(input_t(i, box_attr_num * an_idx + 4, j, k));

          for (int c = 0; c < class_num; c++) {
            pred_classes_t(i, an_idx, j, k, c) =
                sigmod(input_t(i, box_attr_num * an_idx + 5 + c, j, k));
          }
        }
      }
    }
  }
}

template <typename T>
static T CalcBoxIoU(std::vector<T> box1, std::vector<T> box2,
                    bool center_mode) {
  T b1_x1, b1_x2, b1_y1, b1_y2;
  T b2_x1, b2_x2, b2_y1, b2_y2;
  if (center_mode) {
    b1_x1 = box1[0] - box1[2] / 2;
    b1_x2 = box1[0] + box1[2] / 2;
    b1_y1 = box1[1] - box1[3] / 2;
    b1_y2 = box1[1] + box1[3] / 2;
    b2_x1 = box2[0] - box2[2] / 2;
    b2_x2 = box2[0] + box2[2] / 2;
    b2_y1 = box2[1] - box2[3] / 2;
    b2_y2 = box2[1] + box2[3] / 2;
  } else {
    b1_x1 = box1[0];
    b1_x2 = box1[1];
    b1_y1 = box1[2];
    b1_y2 = box1[3];
    b2_x1 = box2[0];
    b2_x2 = box2[0];
    b2_y1 = box2[1];
    b2_y2 = box2[1];
  }
  T b1_area = (b1_x2 - b1_x1 + 1.0) * (b1_y2 - b1_y1 + 1.0);
  T b2_area = (b2_x2 - b2_x1 + 1.0) * (b2_y2 - b2_y1 + 1.0);

  T inter_rect_x1 = std::max(b1_x1, b2_x1);
  T inter_rect_y1 = std::max(b1_y1, b2_y1);
  T inter_rect_x2 = std::min(b1_x2, b2_x2);
  T inter_rect_y2 = std::min(b1_y2, b2_y2);
  T inter_area = std::max(inter_rect_x2 - inter_rect_x1 + 1.0, 0.0) *
                 std::max(inter_rect_y2 - inter_rect_y1 + 1.0, 0.0);

  return inter_area / (b1_area + b2_area - inter_area + 1e-16);
}

template <typename T>
static inline int GetPredLabel(const Tensor& pred_classes, int n,
                               int best_an_index, int gj, int gi) {
  auto pred_classes_t = EigenTensor<T, 5>::From(pred_classes);
  T score = 0.0;
  int label = -1;
  for (int i = 0; i < pred_classes.dims()[4]; i++) {
    if (pred_classes_t(n, best_an_index, gj, gi, i) > score) {
      score = pred_classes_t(n, best_an_index, gj, gi, i);
      label = i;
    }
  }
  return label;
}

template <typename T>
static void CalcPredBoxWithGTBox(
    const Tensor& pred_boxes, const Tensor& pred_confs,
    const Tensor& pred_classes, const Tensor& gt_boxes,
    std::vector<int> anchors, const float ignore_thresh, const int img_height,
    int* gt_num, int* correct_num, Tensor* mask_true, Tensor* mask_false,
    Tensor* tx, Tensor* ty, Tensor* tw, Tensor* th, Tensor* tconf,
    Tensor* tclass) {
  const int n = gt_boxes.dims()[0];
  const int b = gt_boxes.dims()[1];
  const int grid_size = pred_boxes.dims()[1];
  const int anchor_num = anchors.size() / 2;
  auto pred_boxes_t = EigenTensor<T, 5>::From(pred_boxes);
  auto pred_confs_t = EigenTensor<T, 4>::From(pred_confs);
  auto pred_classes_t = EigenTensor<T, 5>::From(pred_classes);
  auto gt_boxes_t = EigenTensor<T, 3>::From(gt_boxes);
  auto mask_true_t = EigenTensor<int, 4>::From(*mask_true).setConstant(0.0);
  auto mask_false_t = EigenTensor<int, 4>::From(*mask_false).setConstant(1.0);
  auto tx_t = EigenTensor<T, 4>::From(*tx).setConstant(0.0);
  auto ty_t = EigenTensor<T, 4>::From(*ty).setConstant(0.0);
  auto tw_t = EigenTensor<T, 4>::From(*tw).setConstant(0.0);
  auto th_t = EigenTensor<T, 4>::From(*th).setConstant(0.0);
  auto tconf_t = EigenTensor<T, 4>::From(*tconf).setConstant(0.0);
  auto tclass_t = EigenTensor<T, 5>::From(*tclass).setConstant(0.0);

  *gt_num = 0;
  *correct_num = 0;
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < b; j++) {
      if (isZero(gt_boxes_t(i, j, 0)) && isZero(gt_boxes_t(i, j, 1)) &&
          isZero(gt_boxes_t(i, j, 2)) && isZero(gt_boxes_t(i, j, 3))) {
        continue;
      }

      *(gt_num)++;
      int gt_label = gt_boxes_t(i, j, 0);
      T gx = gt_boxes_t(i, j, 1);
      T gy = gt_boxes_t(i, j, 2);
      T gw = gt_boxes_t(i, j, 3);
      T gh = gt_boxes_t(i, j, 4);
      int gi = static_cast<int>(gx);
      int gj = static_cast<int>(gy);

      T max_iou = static_cast<T>(-1);
      T iou;
      int best_an_index = -1;
      std::vector<T> gt_box({0, 0, gw, gh});
      for (int an_idx = 0; an_idx < anchor_num; an_idx++) {
        std::vector<T> anchor_shape({0, 0, static_cast<T>(anchors[2 * an_idx]),
                                     static_cast<T>(anchors[2 * an_idx + 1])});
        iou = CalcBoxIoU(gt_box, anchor_shape, false);
        if (iou > max_iou) {
          max_iou = iou;
          best_an_index = an_idx;
        }
        if (iou > ignore_thresh) {
          mask_false_t(b, an_idx, gj, gi) = 0;
        }
      }
      mask_true_t(b, best_an_index, gj, gi) = 1;
      mask_false_t(b, best_an_index, gj, gi) = 1;
      tx_t(i, best_an_index, gj, gi) = gx - gi;
      ty_t(i, best_an_index, gj, gi) = gy - gj;
      tw_t(i, best_an_index, gj, gi) =
          log(gw / anchors[2 * best_an_index] + 1e-16);
      th_t(i, best_an_index, gj, gi) =
          log(gh / anchors[2 * best_an_index + 1] + 1e-16);
      tclass_t(b, best_an_index, gj, gi, gt_label) = 1;
      tconf_t(b, best_an_index, gj, gi) = 1;

      std::vector<T> pred_box({
          pred_boxes_t(i, best_an_index, gj, gi, 0),
          pred_boxes_t(i, best_an_index, gj, gi, 1),
          pred_boxes_t(i, best_an_index, gj, gi, 2),
          pred_boxes_t(i, best_an_index, gj, gi, 3),
      });
      gt_box[0] = gx;
      gt_box[1] = gy;
      iou = CalcBoxIoU(gt_box, pred_box, true);
      int pred_label = GetPredLabel<T>(pred_classes, i, best_an_index, gj, gi);
      T score = pred_confs_t(i, best_an_index, gj, gi);
      if (iou > 0.5 && pred_label == gt_label && score > 0.5) {
        (*correct_num)++;
      }
    }
  }
  mask_false_t = mask_true_t - mask_false_t;
}

template <typename DeviceContext, typename T>
class Yolov3LossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* gt_boxes = ctx.Input<Tensor>("GTBox");
    auto* output = ctx.Output<Tensor>("Out");
    int img_height = ctx.Attr<int>("img_height");
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
    int class_num = ctx.Attr<int>("class_num");
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");

    const int n = input->dims()[0];
    const int c = input->dims()[1];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;
    const float stride = static_cast<float>(img_height) / h;

    Tensor pred_x, pred_y, pred_w, pred_h;
    Tensor pred_boxes, pred_confs, pred_classes;
    pred_x.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_y.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_w.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_h.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_boxes.mutable_data<T>({n, an_num, h, w, 4}, ctx.GetPlace());
    pred_confs.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_classes.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
    CalcPredResult<T>(*input, &pred_boxes, &pred_confs, &pred_classes, &pred_x,
                      &pred_y, &pred_w, &pred_h, anchors, class_num, stride);

    Tensor mask_true, mask_false;
    Tensor tx, ty, tw, th, tconf, tclass;
    mask_true.mutable_data<int>({n, an_num, h, w}, ctx.GetPlace());
    mask_false.mutable_data<int>({n, an_num, h, w}, ctx.GetPlace());
    tx.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    ty.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tw.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    th.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tconf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tclass.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
    int gt_num = 0;
    int correct_num = 0;
    CalcPredBoxWithGTBox<T>(pred_boxes, pred_confs, pred_classes, *gt_boxes,
                            anchors, ignore_thresh, img_height, &gt_num,
                            &correct_num, &mask_true, &mask_false, &tx, &ty,
                            &tw, &th, &tconf, &tclass);

    T loss_x = CalcMSEWithMask<T>(pred_x, tx, mask_true);
    T loss_y = CalcMSEWithMask<T>(pred_y, ty, mask_true);
    T loss_w = CalcMSEWithMask<T>(pred_w, tw, mask_true);
    T loss_h = CalcMSEWithMask<T>(pred_h, th, mask_true);
    T loss_conf_true = CalcBCEWithMask<T>(pred_confs, tconf, mask_true);
    T loss_conf_false = CalcBCEWithMask<T>(pred_confs, tconf, mask_false);
    // T loss_class = CalcCEWithMask<T>()
  }
};

template <typename DeviceContext, typename T>
class Yolov3LossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* d_input_t = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* d_output_t = ctx.Input<Tensor>(framework::GradVarName("Out"));
  }
};

}  // namespace operators
}  // namespace paddle