expand_as_op.cc 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/expand_as_op.h"
#include <memory>
#include <vector>

namespace paddle {
namespace operators {

using framework::Tensor;

class ExpandAsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true);
    PADDLE_ENFORCE_EQ(ctx->HasInput("target_tensor"), true);
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true);
    auto x_dims = ctx->GetInputDim("X");
    auto target_tensor_dims = ctx->GetInputDim("target_tensor");
    PADDLE_ENFORCE_EQ(static_cast<size_t>(x_dims.size()),
                      target_tensor_dims.size(),
                      "The rank of input(target_tensor) must be equal "
                      "to the rank of Input(X).");
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
                      "The rank of Input(X) must not be greater than 6.");
    std::vector<int64_t> out_shape(x_dims.size());
    ctx->SetOutputDim("Out", framework::make_ddim(out_shape));
  }
};

class ExpandAsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
             "X is the input to be expanded.");
    AddOutput("Out",
              "(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
              "The rank of Output(Out) have the same with Input(X). "
              "After expanding, size of each dimension of Output(Out) is equal "
              "to size of the corresponding dimension of Input(X) multiplying "
              "the corresponding value given by Attr(expand_times).");
    AddInput("target_tensor", "Expand tensor's shape for each dimension.");
    AddComment(R"DOC(
Expand as operator tiles the input by given times number. You should set times
number for each dimension by providing tensor 'expend_tensor'. The rank of X
should be in [1, 6]. Please note that size of 'expend_tensor' must be the same
with X's rank. Following is a using case:
Input(X) is a 3-D tensor with shape [2, 3, 1]:
        [
           [[1], [2], [3]],
           [[4], [5], [6]]
        ]
target_tensors'shape:  [2, 6, 2]
Output(Out) is a 3-D tensor with shape [2, 6, 2]:
        [
            [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
            [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
        ]
)DOC");
  }
};

class ExpandAsGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true);
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true);

    auto x_dims = ctx->GetInputDim("X");
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
Z
Zeng Jinle 已提交
91 92 93 94 95 96 97

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
98 99
};

H
hong 已提交
100 101
template <typename T>
class ExpandAsGradOpMaker : public framework::SingleGradOpMaker<T> {
102
 public:
H
hong 已提交
103
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
104 105

 protected:
H
hong 已提交
106 107
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
108
    op->SetType("expand_as_grad");
H
hong 已提交
109 110 111 112 113
    op->SetInput("X", this->Input("X"));
    op->SetInput("target_tensor", this->Input("target_tensor"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
114 115 116 117
    return op;
  }
};

Z
Zeng Jinle 已提交
118
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ExpandAsGradNoNeedBufVarsInferer, "X");
119 120 121 122 123 124

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(expand_as, ops::ExpandAsOp, ops::ExpandAsOpMaker,
H
hong 已提交
125 126
                  ops::ExpandAsGradOpMaker<paddle::framework::OpDesc>,
                  ops::ExpandAsGradOpMaker<paddle::imperative::OpBase>);
Z
Zeng Jinle 已提交
127 128
REGISTER_OPERATOR(expand_as_grad, ops::ExpandAsGradOp,
                  ops::ExpandAsGradNoNeedBufVarsInferer);
129 130 131 132
REGISTER_OP_CPU_KERNEL(
    expand_as, ops::ExpandAsKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ExpandAsKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ExpandAsKernel<paddle::platform::CPUDeviceContext, int>,
133
    ops::ExpandAsKernel<paddle::platform::CPUDeviceContext, int64_t>,
134 135 136
    ops::ExpandAsKernel<paddle::platform::CPUDeviceContext, bool>);
REGISTER_OP_CPU_KERNEL(
    expand_as_grad,
137 138
    ops::ExpandAsGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ExpandAsGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
139 140
    ops::ExpandAsGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ExpandAsGradKernel<paddle::platform::CPUDeviceContext, double>);