test_parallel_executor.py 3.7 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle.fluid as fluid
Y
Stash  
Yu Yang 已提交
17 18
import paddle.v2 as paddle
import paddle.v2.dataset.mnist as mnist
Y
Yu Yang 已提交
19
import numpy
Y
Yu Yang 已提交
20 21


22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
def simple_fc_net():
    reader = fluid.layers.open_recordio_file(
        filename='./mnist.recordio',
        shapes=[[-1, 784], [-1, 1]],
        lod_levels=[0, 0],
        dtypes=['float32', 'int64'])
    img, label = fluid.layers.read_file(reader)
    hidden = img
    for _ in xrange(4):
        hidden = fluid.layers.fc(
            hidden,
            size=200,
            act='tanh',
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=1.0)))
    prediction = fluid.layers.fc(hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    loss = fluid.layers.mean(loss)
    return loss


def fc_with_batchnorm():
    reader = fluid.layers.open_recordio_file(
        filename='./mnist.recordio',
        shapes=[[-1, 784], [-1, 1]],
        lod_levels=[0, 0],
        dtypes=['float32', 'int64'])
    img, label = fluid.layers.read_file(reader)
    hidden = img
Y
Yu Yang 已提交
51
    for _ in xrange(1):
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
        hidden = fluid.layers.fc(
            hidden,
            size=200,
            act='tanh',
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=1.0)))

        hidden = fluid.layers.batch_norm(input=hidden)

    prediction = fluid.layers.fc(hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    loss = fluid.layers.mean(loss)
    return loss


Y
Yu Yang 已提交
67
class ParallelExecutor(unittest.TestCase):
68 69
    @classmethod
    def setUpClass(cls):
Y
Stash  
Yu Yang 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83
        # Convert mnist to recordio file
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            reader = paddle.batch(mnist.train(), batch_size=32)
            feeder = fluid.DataFeeder(
                feed_list=[  # order is image and label
                    fluid.layers.data(
                        name='image', shape=[784]),
                    fluid.layers.data(
                        name='label', shape=[1], dtype='int64'),
                ],
                place=fluid.CPUPlace())
            fluid.recordio_writer.convert_reader_to_recordio_file(
                './mnist.recordio', reader, feeder)

84 85 86 87 88 89 90
    def test_simple_fc(self):
        self.check_network_convergence(simple_fc_net)

    def test_batchnorm_fc(self):
        self.check_network_convergence(fc_with_batchnorm)

    def check_network_convergence(self, method):
Y
Yu Yang 已提交
91 92 93
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
94
            loss = method()
Y
Yu Yang 已提交
95 96
            adam = fluid.optimizer.Adam()
            adam.minimize(loss)
97 98 99
            exe = fluid.ParallelExecutor(loss_name=loss.name, use_cuda=True)
            first_loss, = exe.run([loss.name])
            first_loss = numpy.array(first_loss)
Y
Yu Yang 已提交
100

101 102
            for i in xrange(10):
                exe.run([])
Y
Debug  
Yu Yang 已提交
103

104 105
            last_loss, = exe.run([loss.name])
            last_loss = numpy.array(last_loss)
Y
Debug  
Yu Yang 已提交
106

107 108
            print first_loss, last_loss
            self.assertGreater(first_loss[0], last_loss[0])