multi_devices_graph_builder.cc 4.9 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/nccl_helper.h"

namespace paddle {
namespace framework {
namespace details {
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
    const std::vector<Scope *> &local_scopes,
    platform::NCCLContextMap *nccl_ctxs)
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes),
      nccl_ctxs_(nccl_ctxs) {
  for (auto &p : params) {
    grad_names_.insert(GradVarName(p));
  }
}

Y
Yu Yang 已提交
40 41 42
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
    const ProgramDesc &program) const {
  auto graph = new SSAGraph();
Y
Yu Yang 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
  SSAGraph &result = *graph;
  result.vars_.resize(places_.size());

  bool is_forwarding = true;
  for (auto *op : program.Block(0).AllOps()) {
    bool change_forward = false;
    if (!is_forwarding) {
      // FIXME(yy): Do not hard code like this
      if (op->OutputArgumentNames().size() == 1 &&
          op->OutputArgumentNames()[0] == GradVarName(loss_var_name_)) {
        continue;  // Drop fill 1. for backward coeff;
      }
    }

    for (size_t i = 0; i < places_.size(); ++i) {
      auto &p = places_[i];
      auto *s = local_scopes_[i];

      result.ops_.emplace_back(new ComputationOpHandle(*op, s, p));
      auto *op_handle = result.ops_.back().get();
      op_handle->dev_ctx_[p] = const_cast<platform::DeviceContext *>(
          platform::DeviceContextPool::Instance().Get(p));

      auto var_names = op->InputArgumentNames();

      for (auto &each_var_name : var_names) {
        VarHandle *var =
            CreateOrGetLatestVarHandle(&result, each_var_name, p, i);
        op_handle->AddInput(var);
      }
      var_names = op->OutputArgumentNames();

      for (auto &each_var_name : var_names) {
        CreateOpOutput(&result, op_handle, each_var_name, p, i);
      }

      if (is_forwarding) {
        if (var_names.size() == 1 && var_names[0] == loss_var_name_) {
          // Insert ScaleCost OpHandle
          op_handle = new ScaleLossGradOpHandle(local_scopes_.size(), s, p,
                                                nccl_ctxs_->DevCtx(p));
          result.ops_.emplace_back(op_handle);

          // FIXME: Currently ScaleLossGradOp only use device_count as scale
          // factor. So it does not depend on any other operators.
          // VarHandle *loss = GetVarHandle(loss_var_name, place);
          // loss->pending_ops_.emplace_back(op_handle);
          // op_handle->inputs_.emplace_back(loss);

          CreateOpOutput(&result, op_handle, GradVarName(loss_var_name_), p, i);
          change_forward = true;
        }
      }
    }

    if (change_forward) {
      is_forwarding = false;
    }

    if (!is_forwarding) {
      auto var_names = op->OutputArgumentNames();
      for (auto &og : var_names) {
        if (grad_names_.count(og) != 0) {  // is param grad
          // Insert NCCL AllReduce Op
          result.ops_.emplace_back(
              new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));
          auto *op_handle = result.ops_.back().get();

          for (size_t i = 0; i < places_.size(); ++i) {
            auto &p = places_[i];
            auto &vars = result.vars_[i][og];

            if (vars.empty()) {  // This device has no data. continue.
              continue;
            }
            auto *prev_grad = &vars[vars.size() - 1];
            op_handle->AddInput(prev_grad);

            auto &var = vars[vars.size()];
            var.place_ = p;
            var.name_ = og;
            var.version_ = vars.size() - 1;

            op_handle->AddOutput(&var);
          }
        }
      }
    }
  }

  /*
    Dependency graph has been constructed. However, there are still data
    harzaeds need to be handled.
   */
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
138

Y
Yu Yang 已提交
139 140 141 142 143 144
  if (VLOG_IS_ON(10)) {
    std::ostringstream sout;
    PrintGraphviz(*graph, sout);
    VLOG(10) << sout.str();
  }

Y
Yu Yang 已提交
145
  return std::unique_ptr<SSAGraph>(graph);
Y
Yu Yang 已提交
146 147 148 149
}
}  // namespace details
}  // namespace framework
}  // namespace paddle