communicator.cc 37.1 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/distributed/communicator.h"
Q
Qiao Longfei 已提交
16
#include <gflags/gflags.h>
17
#include <paddle/fluid/framework/program_desc.h>
Q
Qiao Longfei 已提交
18
#include <chrono>  // NOLINT
19
#include <map>
Q
Qiao Longfei 已提交
20
#include <thread>  // NOLINT
21
#include <unordered_set>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/eigen.h"
Q
Qiao Longfei 已提交
23 24
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor_util.h"
25
#include "paddle/fluid/framework/threadpool.h"
Q
Qiao Longfei 已提交
26
#include "paddle/fluid/framework/variable_helper.h"
27
#include "paddle/fluid/operators/distributed/distributed.h"
Q
Qiao Longfei 已提交
28 29 30
#include "paddle/fluid/operators/distributed/parameter_recv.h"
#include "paddle/fluid/operators/distributed/parameter_send.h"

31 32 33
DECLARE_int32(communicator_max_merge_var_num);
DECLARE_int32(communicator_send_queue_size);

Q
Qiao Longfei 已提交
34 35
DEFINE_bool(communicator_independent_recv_thread, true,
            "use an independent to recv vars from parameter server");
36
DEFINE_int32(communicator_min_send_grad_num_before_recv, 20,
37
             "max grad num to send before recv parameters");
38
DEFINE_int32(communicator_thread_pool_size, 5, "thread num to do send or recv");
Q
Qiao Longfei 已提交
39 40 41
DEFINE_int32(communicator_send_wait_times, 5,
             "times that send thread will wait if merge num does not reach "
             "max_merge_var_num");
42 43
DEFINE_bool(communicator_fake_rpc, false,
            "fake mode does not really send any thing");
44 45
DEFINE_bool(communicator_merge_sparse_grad, true,
            "merge sparse gradient before sending");
46 47
DEFINE_int32(communicator_merge_sparse_bucket, 2000,
             "number of threads for sparse var");
Q
Qiao Longfei 已提交
48

Q
Qiao Longfei 已提交
49 50 51 52
namespace paddle {
namespace operators {
namespace distributed {

Q
Qiao Longfei 已提交
53 54 55 56 57 58
inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

59 60 61 62 63 64 65
template <typename T>
inline void VSUB(int n, const T *x, const T *y, T *z) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] - y[i];
  }
}

T
tangwei12 已提交
66
std::once_flag Communicator::init_flag_;
67
std::shared_ptr<Communicator> Communicator::communicator_(nullptr);
Q
can run  
Qiao Longfei 已提交
68

T
tangwei12 已提交
69 70 71 72 73 74 75
void AsyncCommunicator::InitImpl(const RpcCtxMap &send_varname_to_ctx,
                                 const RpcCtxMap &recv_varname_to_ctx,
                                 Scope *recv_scope) {
  send_varname_to_ctx_ = std::move(send_varname_to_ctx);
  recv_varname_to_ctx_ = std::move(recv_varname_to_ctx);
  recv_scope_ = std::move(recv_scope);

Q
Qiao Longfei 已提交
76 77 78 79 80
  // get all send information from graph, build vars_to_send
  VLOG(0) << "communicator_independent_recv_thread: "
          << FLAGS_communicator_independent_recv_thread;
  VLOG(0) << "communicator_send_queue_size: "
          << FLAGS_communicator_send_queue_size;
81 82
  VLOG(0) << "communicator_min_send_grad_num_before_recv: "
          << FLAGS_communicator_min_send_grad_num_before_recv;
Q
Qiao Longfei 已提交
83 84
  VLOG(0) << "communicator_thread_pool_size: "
          << FLAGS_communicator_thread_pool_size;
85 86
  VLOG(0) << "communicator_send_wait_times: "
          << FLAGS_communicator_send_wait_times;
Q
Qiao Longfei 已提交
87
  VLOG(0) << "communicator_max_merge_var_num: "
88 89
          << FLAGS_communicator_max_merge_var_num;
  VLOG(0) << "communicator_fake_rpc: " << FLAGS_communicator_fake_rpc;
90 91
  VLOG(0) << "communicator_merge_sparse_grad: "
          << FLAGS_communicator_merge_sparse_grad;
92 93
  VLOG(0) << "communicator_is_sgd_optimizer: "
          << FLAGS_communicator_is_sgd_optimizer;
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

  if (send_varname_to_ctx.size() == 0) {
    VLOG(0) << "nothing need to be send, will not start send_thread";
  } else {
    send_scope_.reset(new Scope());
    for (auto &iter : send_varname_to_ctx_) {
      send_varname_to_queue_[iter.first] =
          std::make_shared<BlockingQueue<std::shared_ptr<Variable>>>(
              FLAGS_communicator_send_queue_size);
    }
    send_threadpool_.reset(
        new ::ThreadPool(FLAGS_communicator_thread_pool_size));
  }

  if (recv_varname_to_ctx.size() == 0) {
    VLOG(0) << "nothing need to be received, will not start recv_thread";
  } else {
    recv_threadpool_.reset(
        new ::ThreadPool(FLAGS_communicator_thread_pool_size));
Q
Qiao Longfei 已提交
113 114 115
  }
}

T
tangwei12 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
void AsyncCommunicator::InitImpl(const paddle::framework::ProgramDesc &program,
                                 Scope *param_scope) {
  using RpcCtxMap = operators::distributed::RpcCtxMap;
  VLOG(3) << "ProcessGraph";
  RpcCtxMap send_varname_to_ctx;
  RpcCtxMap recv_varname_to_ctx;
  for (auto *op : program.Block(0).AllOps()) {
    VLOG(3) << "node name " << op->Type();
    if (op->Type() == "send") {
      auto send_var_name = op->Input("X")[0];
      auto send_varnames = boost::get<std::vector<std::string>>(
          op->GetNullableAttr("send_varnames"));
      auto epmap =
          boost::get<std::vector<std::string>>(op->GetNullableAttr("epmap"));
      auto height_section =
          boost::get<std::vector<int64_t>>(op->GetNullableAttr("sections"));
      auto trainer_id = boost::get<int>(op->GetNullableAttr("trainer_id"));
      send_varname_to_ctx[send_var_name] = operators::distributed::RpcContext(
          send_var_name, send_varnames, epmap, height_section, trainer_id);
      VLOG(3) << "find and init an send op: "
              << send_varname_to_ctx[send_var_name];
    } else if (op->Type() == "recv") {
      auto do_not_run = boost::get<int>(op->GetNullableAttr("do_not_run"));
      PADDLE_ENFORCE_GT(do_not_run, 0, "recv should not run!");
      auto recv_var_name = op->Output("Out")[0];
      auto recv_varnames = boost::get<std::vector<std::string>>(
          op->GetNullableAttr("recv_varnames"));
      auto epmap =
          boost::get<std::vector<std::string>>(op->GetNullableAttr("epmap"));
      auto trainer_id = boost::get<int>(op->GetNullableAttr("trainer_id"));
      recv_varname_to_ctx[recv_var_name] = operators::distributed::RpcContext(
          recv_var_name, recv_varnames, epmap, {}, trainer_id);
    }
  }

  // init communicator here
  if (send_varname_to_ctx.size() == 0 && recv_varname_to_ctx.size() == 0) {
    LOG(WARNING) << "no var need to send and recv!!";
  }

  operators::distributed::AsyncCommunicator::InitImpl(
      send_varname_to_ctx, recv_varname_to_ctx, param_scope);
}

AsyncCommunicator::~AsyncCommunicator() {
161 162 163 164
  if (FLAGS_v >= 3) {
    std::string msg("~Communicator");
    fwrite(msg.c_str(), msg.length(), 1, stdout);
  }
Q
Qiao Longfei 已提交
165 166 167
  running_ = false;
  if (send_thread_) send_thread_->join();
  if (recv_thread_) recv_thread_->join();
168 169 170 171
  if (FLAGS_v >= 3) {
    std::string msg("~Communicator done");
    fwrite(msg.c_str(), msg.length(), 1, stdout);
  }
Q
Qiao Longfei 已提交
172 173
}

T
tangwei12 已提交
174
void AsyncCommunicator::SendThread() {
Q
Qiao Longfei 已提交
175
  VLOG(3) << "SendThread start!";
Q
Qiao Longfei 已提交
176 177 178
  while (running_) {
    std::vector<std::future<void>> task_futures;
    task_futures.reserve(send_varname_to_ctx_.size());
Q
Qiao Longfei 已提交
179
    VLOG(3) << "run send graph";
Q
Qiao Longfei 已提交
180
    auto before_run_send_graph = GetCurrentUS();
Q
Qiao Longfei 已提交
181
    for (auto &iter : send_varname_to_queue_) {
Q
Qiao Longfei 已提交
182 183
      auto &var_name = iter.first;
      auto &var_queue = iter.second;
Q
Qiao Longfei 已提交
184
      if (var_queue->Size() > 0) {
Q
Qiao Longfei 已提交
185
        auto send_task = [this, &var_name, &var_queue] {
Q
Qiao Longfei 已提交
186
          VLOG(3) << var_name << " merge and send";
Q
Qiao Longfei 已提交
187 188
          std::vector<std::shared_ptr<Variable>> vars;
          size_t merged_var_num = 0;
Q
Qiao Longfei 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
          size_t wait_times = 0;
          while (merged_var_num < FLAGS_communicator_max_merge_var_num) {
            if (var_queue->Size() == 0) {
              VLOG(3) << "wait_times -> " << wait_times;
              if (wait_times >= FLAGS_communicator_send_wait_times) {
                break;
              }
              std::this_thread::sleep_for(std::chrono::milliseconds(10));
              wait_times++;
              continue;
            } else {
              wait_times = 0;

              vars.push_back(var_queue->Pop());
              // only count the send number of the first var
              if (var_name == send_varname_to_queue_.begin()->first) {
                grad_num_.fetch_add(1, std::memory_order_relaxed);
              }
              merged_var_num++;
208
            }
Q
Qiao Longfei 已提交
209
          }
Q
Qiao Longfei 已提交
210
          auto before_merge = GetCurrentUS();
Q
Qiao Longfei 已提交
211
          MergeVars(var_name, vars, send_scope_.get());
Q
Qiao Longfei 已提交
212
          auto after_merge = GetCurrentUS();
Q
Qiao Longfei 已提交
213 214
          VLOG(3) << "merge " << merged_var_num << " " << var_name
                  << " use time " << after_merge - before_merge;
Q
Qiao Longfei 已提交
215 216
          auto send_functor = distributed::ParameterSend<float>();
          auto &ctx = send_varname_to_ctx_.at(var_name);
217
          if (!FLAGS_communicator_fake_rpc) {
218
            send_functor(ctx, *send_scope_, true, 1);
219
          }
Q
Qiao Longfei 已提交
220 221 222
          auto after_send = GetCurrentUS();
          VLOG(3) << "send " << var_name << " use time "
                  << after_send - after_merge;
Q
Qiao Longfei 已提交
223 224 225
        };
        task_futures.emplace_back(
            send_threadpool_->enqueue(std::move(send_task)));
Q
Qiao Longfei 已提交
226
      } else {
227
        VLOG(4) << var_name << " queue empty";
Q
Qiao Longfei 已提交
228
      }
Q
Qiao Longfei 已提交
229 230 231
    }
    for (auto &task_f : task_futures) {
      task_f.wait();
Q
Qiao Longfei 已提交
232
    }
Q
Qiao Longfei 已提交
233
    auto after_run_send_graph = GetCurrentUS();
234 235 236

    VLOG(3) << "run send graph use time "
            << after_run_send_graph - before_run_send_graph;
T
tangwei12 已提交
237
    Recv();
Q
Qiao Longfei 已提交
238
  }
239
  VLOG(0) << "communicator stopped, send thread exit";
Q
Qiao Longfei 已提交
240 241
}

T
tangwei12 已提交
242
void AsyncCommunicator::RecvThread() {
Q
Qiao Longfei 已提交
243
  VLOG(3) << "RecvThread start!";
Q
Qiao Longfei 已提交
244
  while (running_) {
245
    auto grad_num = grad_num_.load();
246
    if (grad_num > FLAGS_communicator_min_send_grad_num_before_recv) {
247 248 249 250 251 252
      VLOG(1) << "current grad num " << grad_num;
      RecvAll();
      grad_num_.store(0);
    } else {
      std::this_thread::sleep_for(std::chrono::milliseconds(10));
    }
Q
Qiao Longfei 已提交
253
  }
254
  VLOG(0) << "communicator stopped, recv thread exit";
Q
Qiao Longfei 已提交
255 256
}

T
tangwei12 已提交
257 258
void AsyncCommunicator::Send(const std::string &var_name,
                             const framework::Scope &scope) {
Q
Qiao Longfei 已提交
259 260 261 262
  VLOG(3) << "communicator send " << var_name;
  // push var into send queue by var_name
  auto *grad_var = scope.FindVar(var_name);
  PADDLE_ENFORCE(grad_var->IsInitialized(), "grad var should be inited");
263 264 265 266 267
  if (grad_var->IsType<framework::SelectedRows>() &&
      !FLAGS_communicator_merge_sparse_grad) {
    auto send_functor = distributed::ParameterSend<float>();
    auto &ctx = send_varname_to_ctx_.at(var_name);
    if (!FLAGS_communicator_fake_rpc) {
268
      send_functor(ctx, scope, true, 1);
269 270 271 272 273 274 275 276
    }
  } else {
    auto tmp_grad_var = std::make_shared<Variable>();
    framework::CopyVariable(*grad_var, tmp_grad_var.get());
    auto &queue = send_varname_to_queue_.at(var_name);
    VLOG(3) << "send " << var_name << " queue size " << queue->Size();
    queue->Push(tmp_grad_var);
  }
Q
Qiao Longfei 已提交
277 278
}

T
tangwei12 已提交
279 280 281
void AsyncCommunicator::Recv() {
  if (FLAGS_communicator_independent_recv_thread) {
    return;
282 283
  }

T
tangwei12 已提交
284 285 286 287 288 289
  auto grad_num = grad_num_.load();
  if (grad_num > 0) {
    RecvAll();
    grad_num_.store(0);
  } else {
    std::this_thread::sleep_for(std::chrono::milliseconds(10));
290 291 292
  }
}

T
tangwei12 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
void AsyncCommunicator::RecvAll() {
  VLOG(3) << "parallel run recv graph";
  if (!running_) return;
  auto before_send = GetCurrentUS();
  std::vector<std::future<void>> task_futures;
  task_futures.reserve(recv_varname_to_ctx_.size());
  for (auto &iter : recv_varname_to_ctx_) {
    auto recv_task = [this, &iter] {
      auto &var_name = iter.first;
      VLOG(4) << "recv var " << var_name;
      auto recv_functor = distributed::ParameterRecv<float>();
      if (!FLAGS_communicator_fake_rpc) {
        recv_functor(iter.second, *recv_scope_);
      }
    };
    task_futures.emplace_back(recv_threadpool_->enqueue(std::move(recv_task)));
  }
  for (auto &task : task_futures) {
    task.wait();
  }
  auto after_recv = GetCurrentUS();
  VLOG(1) << "run recv graph use time " << after_recv - before_send;
315 316
}

T
tangwei12 已提交
317
void AsyncCommunicator::Start() {
318 319 320 321 322 323 324 325
  VLOG(0) << "Communicator start";
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
    VLOG(1) << "start send thread and recv thread";
    running_ = true;
    // start send and recv thread
    send_thread_.reset(
T
tangwei12 已提交
326
        new std::thread(std::bind(&AsyncCommunicator::SendThread, this)));
327 328
    if (FLAGS_communicator_independent_recv_thread) {
      recv_thread_.reset(
T
tangwei12 已提交
329
          new std::thread(std::bind(&AsyncCommunicator::RecvThread, this)));
330 331 332 333
    }
  }
}

T
tangwei12 已提交
334
void AsyncCommunicator::Stop() {
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
  VLOG(0) << "Communicator stop";
  running_ = false;
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
    if (send_thread_) {
      VLOG(1) << "stop send thread";
      send_thread_->join();
      send_thread_.reset(nullptr);
    }
    if (recv_thread_) {
      VLOG(1) << "stop recv thread";
      recv_thread_->join();
      recv_thread_.reset(nullptr);
    }
Q
Qiao Longfei 已提交
350
  }
351
  VLOG(0) << "Communicator stop done";
Q
Qiao Longfei 已提交
352 353
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
void AsyncCommunicator::Send(const std::vector<std::string> &sparse_var_names,
                             const std::vector<std::string> &sparse_var_tables,
                             const framework::Scope &scope) {}

void AsyncCommunicator::InitImpl(
    const paddle::framework::ProgramDesc &program, Scope *param_scope,
    std::map<std::string, std::map<std::string, std::vector<std::string>>>
        &vars_info,
    const int &trainers, const int &geo_need_push_nums) {}

GeoSgdCommunicator::~GeoSgdCommunicator() {
  if (FLAGS_v >= 3) {
    std::string msg("~Geo Sgd Communicator");
    fwrite(msg.c_str(), msg.length(), 1, stdout);
  }
  running_ = false;
  if (send_thread_) send_thread_->join();
  if (FLAGS_v >= 3) {
    std::string msg("~Geo Sgd Communicator done");
    fwrite(msg.c_str(), msg.length(), 1, stdout);
  }
}

void GeoSgdCommunicator::InitImpl(
    const paddle::framework::ProgramDesc &program, Scope *training_scope,
    std::map<std::string, std::map<std::string, std::vector<std::string>>>
        &vars_info,
    const int &trainers, const int &geo_need_push_nums) {
  training_scope_ = std::move(training_scope);
  trainer_nums_ = std::move(trainers);
  geo_need_push_nums_ = std::move(geo_need_push_nums);

  // get all send information from graph, build vars_to_send
  VLOG(0) << "communicator_independent_recv_thread: "
          << FLAGS_communicator_independent_recv_thread;
  VLOG(0) << "communicator_send_queue_size: "
          << FLAGS_communicator_send_queue_size;
  VLOG(0) << "communicator_min_send_grad_num_before_recv: "
          << FLAGS_communicator_min_send_grad_num_before_recv;
  VLOG(0) << "communicator_thread_pool_size: "
          << FLAGS_communicator_thread_pool_size;
  VLOG(0) << "communicator_send_wait_times: "
          << FLAGS_communicator_send_wait_times;
  VLOG(0) << "communicator_max_merge_var_num: "
          << FLAGS_communicator_max_merge_var_num;
  VLOG(0) << "communicator_fake_rpc: " << FLAGS_communicator_fake_rpc;
  VLOG(0) << "communicator_merge_sparse_grad: "
          << FLAGS_communicator_merge_sparse_grad;
  VLOG(0) << "Trainer nums: " << trainer_nums_;
  VLOG(0) << "geo_sgd_push_before_local_train_nums: " << geo_need_push_nums_;
  VLOG(0) << "communicator_merge_sparse_bucket "
          << FLAGS_communicator_merge_sparse_bucket;

  // process var info from transpiler
  for (auto &iter : vars_info) {
    // change var name in delta scope: "var" -> "var.delta"
    std::string var_name = iter.first;
    std::string send_var_name = VarToDeltaVar(var_name);
    std::vector<std::string> vars_names = iter.second["var_names"];
    std::vector<std::string> send_var_names;
    for (auto origin_var_name : vars_names) {
      send_var_names.push_back(VarToDeltaVar(origin_var_name));
    }

    // get vars section for split
    std::vector<std::string> vars_sections_str = iter.second["sections"];
    std::vector<int64_t> vars_sections_int = {};
    for (std::string str : vars_sections_str) {
      int64_t str2i = std::stol(str.c_str());
      vars_sections_int.push_back(str2i);
    }

    std::vector<std::string> vars_epmap = iter.second["epmap"];

    // record var is sparse or not
    bool is_sparse = iter.second["is_sparse"].front() == std::string("True");
    var_list_[var_name] = is_sparse;

    send_varname_to_ctx_[send_var_name] = operators::distributed::RpcContext(
        send_var_name, send_var_names, vars_epmap, vars_sections_int, 0);
    recv_varname_to_ctx_[var_name] = operators::distributed::RpcContext(
        var_name, vars_names, vars_epmap, vars_sections_int, 0);
436 437 438 439 440 441 442 443

    // record sparse section
    if (is_sparse) {
      need_thread_nums_ +=
          send_varname_to_ctx_[send_var_name].height_sections.size();
      absolute_section_[var_name] = operators::ToAbsoluteSection(
          send_varname_to_ctx_[send_var_name].height_sections);
    }
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
  }

  if (send_varname_to_ctx_.size() == 0 && recv_varname_to_ctx_.size() == 0) {
    LOG(WARNING) << "no var need to send and recv!!";
  }

  send_threadpool_.reset(new ::ThreadPool(FLAGS_communicator_thread_pool_size));
  need_push_queue_ =
      std::make_shared<BlockingQueue<std::shared_ptr<SparseIdsMap>>>(
          geo_need_push_nums);
  delta_scope_.reset(new Scope());
  old_scope_.reset(new Scope());
  pserver_scope_.reset(new Scope());
}

void GeoSgdCommunicator::Start() {
  VLOG(0) << "Geo Sgd Communicator start";
  if (!communicator_) {
    VLOG(0) << "Geo Sgd Communicator is not inited, do nothing";
  } else {
    VLOG(0) << "start send thread ";
    running_ = true;
    // start send and recv thread
    send_thread_.reset(
        new std::thread(std::bind(&GeoSgdCommunicator::SendThread, this)));
  }
}

void GeoSgdCommunicator::Stop() {
  VLOG(0) << "Geo Sgd Communicator stop";
  running_ = false;
  if (!communicator_) {
    VLOG(0) << "Geo Sgd Communicator is not inited, do nothing";
  } else {
    if (send_thread_) {
      VLOG(1) << "stop send thread";
      send_thread_->join();
      send_thread_.reset(nullptr);
    }
  }
  VLOG(0) << "Geo Sgd Communicator stop done";
}

void GeoSgdCommunicator::Send(const std::string &var_name,
                              const framework::Scope &scope) {
  // when execute trainer startup program, recv parameter from pserver
  // training_scope & pserver_scope param will copy it
  if (var_name == "param_init") {
    for (auto &iter : var_list_) {
      // For sparse param, old_scope store LoDTensor,
      // pserver_scope store SelectedRows.
      auto local_var_name = iter.first;
      if (var_list_[local_var_name] == true) {
        GeoSgdSparseParamInit(training_scope_, pserver_scope_.get(),
                              local_var_name);
      } else {
        GeoSgdDenseParamInit(training_scope_, pserver_scope_.get(),
                             local_var_name);
      }
      GeoSgdDenseParamInit(training_scope_, old_scope_.get(), local_var_name);
    }
  }
}

void GeoSgdCommunicator::Send(const std::vector<std::string> &sparse_var_names,
                              const std::vector<std::string> &sparse_var_tables,
                              const framework::Scope &scope) {
  // SparseIdsMap = std::unordered_map<std::string,std::unordered_set<int64_t>>
  std::shared_ptr<SparseIdsMap> ids_table = std::make_shared<SparseIdsMap>();
513
  auto before_run_send = GetCurrentUS();
514 515 516
  for (size_t i = 0; i < sparse_var_tables.size(); i++) {
    if (ids_table->find(sparse_var_tables[i]) == ids_table->end()) {
      // create empty set for new sparse var
517 518 519 520 521 522
      auto splited_var_nums =
          recv_varname_to_ctx_[sparse_var_tables[i]].splited_var_names.size();
      ids_table->insert(
          std::pair<std::string, std::vector<std::unordered_set<int64_t>>>(
              sparse_var_tables[i],
              std::vector<std::unordered_set<int64_t>>{splited_var_nums}));
523 524 525 526 527 528 529
    }
    auto *var = scope.FindVar(sparse_var_names[i]);
    auto var_tensor = var->Get<framework::LoDTensor>();
    int element_number = var_tensor.numel();
    int *var_mutable_data = var_tensor.mutable_data<int>(var_tensor.place());
    // insert ids which has not been record
    for (size_t j = 0; j < element_number; j++) {
530 531 532
      auto ep_idx = GetSectionIndex(var_mutable_data[j],
                                    absolute_section_[sparse_var_tables[i]]);
      ids_table->at(sparse_var_tables[i])[ep_idx].insert(var_mutable_data[j]);
533 534 535 536 537
      VLOG(4) << "Sparse var " << sparse_var_tables[i] << " insert "
              << var_mutable_data[j];
    }
  }
  need_push_queue_->Push(ids_table);
538 539
  auto after_run_send = GetCurrentUS();
  VLOG(3) << "run send_op use time " << after_run_send - before_run_send;
540 541 542 543 544 545 546 547 548 549
}

void GeoSgdCommunicator::SendThread() {
  VLOG(0) << "SendThread start!";
  auto before_run_training = GetCurrentUS();

  while (running_) {
    std::vector<std::future<void>> task_futures;
    task_futures.reserve(send_varname_to_ctx_.size());

550 551
    size_t wait_times = 0;
    while (ids_send_vec_.size() < geo_need_push_nums_) {
552 553
      VLOG(4) << "ids_send_vec_ Size: " << ids_send_vec_.size();
      if (need_push_queue_->Size() > 0) {
554
        wait_times = 0;
555 556
        ids_send_vec_.push_back(*(need_push_queue_->Pop()));
        VLOG(4) << "ids_send_vec_ pushed";
557 558 559 560 561 562 563 564
      } else if (need_push_queue_->Size() == 0) {
        VLOG(3) << "wait_times -> " << wait_times;
        if (wait_times >= FLAGS_communicator_send_wait_times) {
          break;
        }
        std::this_thread::sleep_for(std::chrono::milliseconds(10));
        wait_times++;
        continue;
565 566 567 568 569 570 571 572 573 574 575 576
      }
    }

    if (ids_send_vec_.size() >= geo_need_push_nums_) {
      auto after_run_training = GetCurrentUS();
      VLOG(3) << "run Training use time "
              << after_run_training - before_run_training;
      before_run_training = GetCurrentUS();
      VLOG(3) << "Start send after get need_push_num";

      for (auto &iter : send_varname_to_ctx_) {
        auto &var_name = iter.first;
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
        if (var_list_[DeltaVarToVar(var_name)] == true) {
          // sparse var: merge->send->recv
          for (auto &splited_var_name : iter.second.splited_var_names) {
            auto send_task = [this, &var_name, &splited_var_name] {
              auto before_run_geo = GetCurrentUS();
              auto ids_set =
                  SparseIdsMerge(ids_send_vec_, var_name, splited_var_name);
              SendUpdateSparseVars(var_name, splited_var_name, ids_set);
              RecvUpdateSparseVars(var_name, splited_var_name);
              auto after_run_geo = GetCurrentUS();
              VLOG(1) << "run GEO-SGD var " << splited_var_name << " use time "
                      << after_run_geo - before_run_geo;
            };
            task_futures.emplace_back(
                send_threadpool_->enqueue(std::move(send_task)));
592
          }
593 594 595 596 597 598 599 600 601 602 603 604
        } else {
          auto send_task = [this, &var_name] {
            auto before_run_geo = GetCurrentUS();
            SendUpdateDenseVars(var_name);
            RecvUpdateDenseVars(var_name);
            auto after_run_geo = GetCurrentUS();
            VLOG(3) << "run GEO-SGD var " << var_name << " use time "
                    << after_run_geo - before_run_geo;
          };
          task_futures.emplace_back(
              send_threadpool_->enqueue(std::move(send_task)));
        }
605
      }
606 607 608 609
      for (auto &task_f : task_futures) {
        task_f.wait();
      }
      ids_send_vec_.clear();
610 611 612 613 614
    }
  }
}

std::unordered_set<int64_t> GeoSgdCommunicator::SparseIdsMerge(
615 616
    const std::vector<SparseIdsMap> &ids_send_vec, const std::string &var_name,
    const std::string &splited_var_name) {
617
  // every batch has some sparse id, merge them into one unoredered_set
618 619
  VLOG(3) << "Sparse Ids merge var: " << var_name
          << " splited var: " << splited_var_name;
620
  auto before_run_ids_merge_ = GetCurrentUS();
621 622
  auto origin_var_name = DeltaVarToVar(var_name);
  auto splited_var_index = GetSplitedVarIndex(var_name, splited_var_name);
623
  std::unordered_set<int64_t> ids_set;
624

625
  for (auto ids_map : ids_send_vec) {
626
    for (auto id : ids_map[origin_var_name][splited_var_index]) {
627 628 629 630
      ids_set.insert(id);
    }
  }
  auto after_run_ids_merge_ = GetCurrentUS();
631 632
  VLOG(3) << "run SparseIdsMerge " << splited_var_name << " has nums "
          << ids_set.size() << " use time "
633 634 635 636 637 638 639
          << after_run_ids_merge_ - before_run_ids_merge_;
  return ids_set;
}

void GeoSgdCommunicator::SendUpdateDenseVars(const std::string &var_name) {
  // calc var_delata = (var_training - var_old)/trainer_nums
  // calc var_old += var_delta
640 641
  // var_name: param.delta
  auto origin_var_name = DeltaVarToVar(var_name);
642 643
  auto before_run_send_dense = GetCurrentUS();

644
  auto *var_x = training_scope_->FindVar(origin_var_name);
645 646
  auto var_x_tensor = var_x->Get<framework::LoDTensor>();

647
  auto *var_y = old_scope_->FindVar(origin_var_name);
648 649 650 651 652 653
  auto var_y_tensor = var_y->Get<framework::LoDTensor>();

  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  auto dims = var_x_tensor.dims();

  // create temp var for sub
654
  auto *var_y_sub = old_scope_->Var(var_name);
655 656 657 658
  framework::CopyVariable(*var_y, var_y_sub);
  auto var_y_sub_tensor = var_y_sub->Get<framework::LoDTensor>();

  // create delta var in delta scope
659
  auto *var_z = delta_scope_->Var(var_name);
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
  auto *var_z_tensor = var_z->GetMutable<framework::LoDTensor>();
  var_z_tensor->mutable_data<float>(dims, var_x_tensor.place());
  var_z_tensor->set_lod(var_x_tensor.lod());

  math::SetConstant<paddle::platform::CPUDeviceContext, float> constant_functor;
  constant_functor(cpu_ctx, var_z_tensor, static_cast<float>(0));

  // calc sub = var_training - var_old
  auto blas = math::GetBlas<paddle::platform::CPUDeviceContext, float>(cpu_ctx);
  blas.SCAL(var_y_sub_tensor.numel(), -1,
            var_y_sub_tensor.mutable_data<float>(var_y_sub_tensor.place()));
  blas.VADD(var_x_tensor.numel(),
            var_x_tensor.mutable_data<float>(var_x_tensor.place()),
            var_y_sub_tensor.mutable_data<float>(var_y_sub_tensor.place()),
            var_z_tensor->mutable_data<float>(var_z_tensor->place()));

  // calc var_delta = sub / trainer_nums
  float trainer_param = 1.0 / static_cast<float>(trainer_nums_);
  blas.SCAL(var_z_tensor->numel(), trainer_param,
            var_z_tensor->mutable_data<float>(var_z_tensor->place()));

  // calc var_old += var_delta
  blas.VADD(var_y_tensor.numel(),
            var_y_tensor.mutable_data<float>(var_y_tensor.place()),
            var_z_tensor->mutable_data<float>(var_z_tensor->place()),
            var_y_tensor.mutable_data<float>(var_y_tensor.place()));

  auto after_run_send_dense = GetCurrentUS();
  VLOG(3) << "run send update dense var " << var_name << " use time "
          << after_run_send_dense - before_run_send_dense;
690 691 692 693 694 695 696 697 698

  auto send_functor = distributed::ParameterSend<float>();
  auto &ctx = send_varname_to_ctx_.at(var_name);

  auto before_send_dense = GetCurrentUS();
  send_functor(ctx, *delta_scope_.get(), true, 1);
  auto after_send_denxe = GetCurrentUS();
  VLOG(3) << "send " << var_name << " use time "
          << after_send_denxe - before_send_dense;
699 700 701
}

void GeoSgdCommunicator::SendUpdateSparseVars(
702 703
    const std::string &var_name, const std::string &splited_var_name,
    const std::unordered_set<int64_t> &ids_table) {
704 705
  // calc var_delata = (var_training - var_old)/trainer_nums
  // calc var_old += var_delta
706 707
  // var_name: param.delta, splited_var_name: param.block0.delta
  // origin_var_name: param
708 709 710
  auto before_run_send_sparse = GetCurrentUS();

  auto ids_num = ids_table.size();
711 712 713 714
  VLOG(4) << "Sparse Ids nums is : " << ids_num;
  auto origin_var_name = DeltaVarToVar(var_name);

  auto *var_x = training_scope_->FindVar(origin_var_name);
715 716
  auto var_x_tensor = var_x->Get<framework::LoDTensor>();

717
  auto *var_y = old_scope_.get()->FindVar(origin_var_name);
718 719 720 721 722 723 724 725
  auto var_y_tensor = var_y->Get<framework::LoDTensor>();

  auto dims = var_x_tensor.dims();
  auto row_numel = dims[1];

  float *x_value = var_x_tensor.mutable_data<float>(var_x_tensor.place());
  float *y_value = var_y_tensor.mutable_data<float>(var_y_tensor.place());

726
  auto *var_z = delta_scope_->Var(splited_var_name);
727 728 729 730 731 732 733
  auto *var_z_select_rows = var_z->GetMutable<framework::SelectedRows>();
  auto *var_z_value = var_z_select_rows->mutable_value();
  var_z_value->Resize({static_cast<int64_t>(ids_num), row_numel});
  auto *z_value = var_z_value->mutable_data<float>(var_x_tensor.place());

  std::vector<int64_t> new_rows;
  new_rows.insert(new_rows.begin(), ids_table.begin(), ids_table.end());
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749

  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  auto blas = math::GetBlas<paddle::platform::CPUDeviceContext, float>(cpu_ctx);
  float avg = 1 / static_cast<float>(trainer_nums_);
  for (int y = 0; y < new_rows.size(); y++) {
    auto ids = new_rows[y];

    float *x_val = x_value + ids * row_numel;
    float *y_val = y_value + ids * row_numel;
    float *z_val = z_value + y * row_numel;

    std::vector<float> row_delta(row_numel, 0);
    VSUB<float>(row_numel, x_val, y_val, row_delta.data());
    blas.SCAL(row_numel, avg, row_delta.data());
    blas.VADD(row_numel, row_delta.data(), y_val, y_val);
    blas.VCOPY(row_numel, row_delta.data(), z_val);
750
  }
751

752
  auto after_run_send_sparse = GetCurrentUS();
753
  VLOG(3) << "run send update sparse var " << splited_var_name << " use time "
754
          << after_run_send_sparse - before_run_send_sparse;
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771

  auto splited_var_index = GetSplitedVarIndex(var_name, splited_var_name);
  std::vector<int64_t> send_rows;
  send_rows.reserve(new_rows.size());
  for (auto idx : new_rows) {
    send_rows.push_back(idx -
                        absolute_section_[origin_var_name][splited_var_index]);
  }
  var_z_select_rows->set_rows(send_rows);
  var_z_select_rows->set_height(
      send_varname_to_ctx_[var_name].height_sections[splited_var_index]);

  auto before_send_sparse = GetCurrentUS();
  RpcSend(var_name, splited_var_name, splited_var_index);
  auto after_send_sparse = GetCurrentUS();
  VLOG(3) << "send " << splited_var_name << " has nums " << new_rows.size()
          << " use time " << after_send_sparse - before_send_sparse;
772 773
}

774
void GeoSgdCommunicator::RecvUpdateDenseVars(const std::string &var_name) {
775 776
  // calc var_training += var_pserver - var_old
  // calc var_old = var_pserver
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
  // var_name: param.delta

  // step1: recv dense var from pserver
  auto origin_var_name = DeltaVarToVar(var_name);

  auto before_run_recv = GetCurrentUS();
  auto recv_functor = distributed::ParameterRecv<float>();
  recv_functor(recv_varname_to_ctx_[origin_var_name], *pserver_scope_.get());
  auto after_run_recv = GetCurrentUS();
  VLOG(3) << "recv var " << origin_var_name << " use time "
          << after_run_recv - before_run_recv;

  // step2: update dense var
  auto before_run_update = GetCurrentUS();
  auto *var_x = training_scope_->FindVar(origin_var_name);
  auto var_x_tensor = var_x->Get<framework::LoDTensor>();

  auto *var_y = old_scope_->FindVar(origin_var_name);
  auto var_y_tensor = var_y->Get<framework::LoDTensor>();

  auto *var_y_sub = old_scope_->Var(origin_var_name);
  framework::CopyVariable(*var_y, var_y_sub);
  auto var_y_sub_tensor = var_y_sub->Get<framework::LoDTensor>();

  auto *var_z = pserver_scope_.get()->FindVar(origin_var_name);
  auto var_z_tensor = var_z->Get<framework::LoDTensor>();

  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  auto blas = math::GetBlas<paddle::platform::CPUDeviceContext, float>(cpu_ctx);
  // calc sub = pserver - old
  blas.SCAL(var_y_sub_tensor.numel(), -1,
            var_y_sub_tensor.mutable_data<float>(var_y_sub_tensor.place()));
  blas.VADD(var_y_tensor.numel(),
            var_y_sub_tensor.mutable_data<float>(var_y_sub_tensor.place()),
            var_z_tensor.mutable_data<float>(var_z_tensor.place()),
            var_y_sub_tensor.mutable_data<float>(var_y_sub_tensor.place()));
  // calc recv += sub
  blas.VADD(var_x_tensor.numel(),
            var_x_tensor.mutable_data<float>(var_x_tensor.place()),
            var_y_sub_tensor.mutable_data<float>(var_y_sub_tensor.place()),
            var_x_tensor.mutable_data<float>(var_x_tensor.place()));
  // calc old = pserver
  framework::CopyVariable(*var_z, var_y);
  auto after_run_update = GetCurrentUS();
  VLOG(3) << "dese var update " << origin_var_name << " use time "
          << after_run_update - before_run_update;
}

void GeoSgdCommunicator::RecvUpdateSparseVars(
    const std::string &var_name, const std::string &splited_var_name) {
  // step 1: recv splited var from pserver
  auto splited_var_index = GetSplitedVarIndex(var_name, splited_var_name);
  auto origin_var_name = DeltaVarToVar(var_name);
  auto origin_splited_var_name = DeltaVarToVar(splited_var_name);

832
  auto before_run_recv = GetCurrentUS();
833 834 835 836
  RpcRecv(origin_var_name, origin_splited_var_name, splited_var_index);
  auto after_run_recv = GetCurrentUS();
  VLOG(3) << "recv var " << origin_splited_var_name << " use time "
          << after_run_recv - before_run_recv;
837

838 839 840
  // step 2: update sparse var
  auto before_run_update = GetCurrentUS();
  auto *var_x = training_scope_->FindVar(origin_var_name);
841
  auto var_x_tensor = var_x->Get<framework::LoDTensor>();
842
  auto dims = var_x_tensor.dims();
843 844
  float *x_value = var_x_tensor.mutable_data<float>(var_x_tensor.place());

845
  auto *var_y = old_scope_->FindVar(origin_var_name);
846 847 848
  auto var_y_tensor = var_y->Get<framework::LoDTensor>();
  float *y_value = var_y_tensor.mutable_data<float>(var_y_tensor.place());

849 850 851 852 853 854 855 856 857 858
  auto *var_z = pserver_scope_.get()->FindVar(origin_splited_var_name);
  auto var_z_slr = var_z->GetMutable<framework::SelectedRows>();
  auto row_size = var_z_slr->rows().size();

  std::vector<int64_t> new_rows;
  new_rows.reserve(row_size);

  for (auto ids : var_z_slr->rows()) {
    new_rows.push_back(ids +
                       absolute_section_[origin_var_name][splited_var_index]);
859 860
  }

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
  auto *new_value = var_z_slr->mutable_value();
  auto row_numel = dims[1];
  auto *z_value = new_value->mutable_data<float>(var_x_tensor.place());

  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  auto blas = math::GetBlas<paddle::platform::CPUDeviceContext, float>(cpu_ctx);
  for (int y = 0; y < new_rows.size(); y++) {
    std::vector<float> row_delta(row_numel, 0);

    auto ids = new_rows[y];

    float *x_val = x_value + ids * row_numel;
    float *y_val = y_value + ids * row_numel;
    float *z_val = z_value + y * row_numel;

    VSUB(row_numel, z_val, y_val, row_delta.data());
    blas.VADD(row_numel, row_delta.data(), x_val, x_val);
    blas.VCOPY(row_numel, z_val, y_val);
  }

  auto after_run_update = GetCurrentUS();
  VLOG(3) << "sparse var recv update " << origin_splited_var_name << " has num "
          << new_rows.size() << " use time "
          << after_run_update - before_run_update;
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
}

void GeoSgdCommunicator::GeoSgdSparseParamInit(framework::Scope *scope_x,
                                               framework::Scope *scope_y,
                                               const std::string var_name) {
  // create selectedrows var from lodtensor var info
  auto *var_x = scope_x->Var(var_name);
  auto *var_y = scope_y->Var(var_name);

  auto var_x_tensor = var_x->Get<framework::LoDTensor>();
  auto *var_y_select_rows = var_y->GetMutable<framework::SelectedRows>();

  auto dims = var_x_tensor.dims();
  auto rows = dims[0];
  auto row_numel = dims[1];

  var_y_select_rows->set_height(rows);
  std::vector<int64_t> new_rows{};
  var_y_select_rows->set_rows(new_rows);
  auto *var_y_value = var_y_select_rows->mutable_value();
  var_y_value->Resize({rows, row_numel});
  var_y_value->mutable_data<float>(var_x_tensor.place());
}

void GeoSgdCommunicator::GeoSgdDenseParamInit(framework::Scope *scope_x,
                                              framework::Scope *scope_y,
                                              const std::string var_name) {
  auto *var_x = scope_x->Var(var_name);
  auto *var_y = scope_y->Var(var_name);
  framework::CopyVariable(*var_x, var_y);
}

917 918 919 920 921 922 923 924 925 926 927
void GeoSgdCommunicator::RpcSend(const std::string &origin_var_name,
                                 const std::string &splited_var_name,
                                 const size_t &splited_var_index) {
  auto trainer_id = send_varname_to_ctx_[origin_var_name].trainer_id;
  auto endpoint =
      send_varname_to_ctx_[origin_var_name].epmap[splited_var_index];

  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &cpu_ctx_send = *pool.Get(platform::CPUPlace());
  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(trainer_id);
928

929 930 931 932 933 934 935 936 937 938 939 940 941
  rpc_client->AsyncSendVar(endpoint, cpu_ctx_send, *delta_scope_.get(),
                           splited_var_name);
}

void GeoSgdCommunicator::RpcRecv(const std::string &var_name,
                                 const std::string &splited_var_name,
                                 const size_t &splited_var_index) {
  auto train_id = recv_varname_to_ctx_[var_name].trainer_id;
  auto endpoint = recv_varname_to_ctx_[var_name].epmap[splited_var_index];
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &cpu_ctx_recv = *pool.Get(platform::CPUPlace());
  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(train_id);
942

943 944 945 946 947 948 949
  pserver_scope_->Var(splited_var_name);
  rpc_client->AsyncGetVar(endpoint, cpu_ctx_recv, *pserver_scope_.get(),
                          splited_var_name, splited_var_name, splited_var_name);
}

void GeoSgdCommunicator::Recv() {}

950 951 952 953 954 955 956
void GeoSgdCommunicator::InitImpl(const RpcCtxMap &send_varname_to_ctx,
                                  const RpcCtxMap &recv_varname_to_ctx,
                                  Scope *recv_scope) {}

void GeoSgdCommunicator::InitImpl(const paddle::framework::ProgramDesc &program,
                                  Scope *recv_scope) {}

Q
Qiao Longfei 已提交
957 958 959
}  // namespace distributed
}  // namespace operators
}  // namespace paddle