test_conv2d_transpose_op.py 6.1 KB
Newer Older
Z
deconv  
zchen0211 已提交
1 2
import unittest
import numpy as np
3 4

import paddle.v2.fluid.core as core
Z
deconv  
zchen0211 已提交
5 6 7
from op_test import OpTest


C
chengduoZH 已提交
8
def conv2dtranspose_forward_naive(input_, filter_, attrs):
Z
deconv  
zchen0211 已提交
9 10 11 12
    in_n, in_c, in_h, in_w = input_.shape
    f_c, out_c, f_h, f_w = filter_.shape
    assert in_c == f_c

C
chengduoZH 已提交
13 14 15 16 17 18
    stride, pad, dilations = attrs['strides'], attrs['paddings'], attrs[
        'dilations']
    d_bolck_h = dilations[0] * (f_h - 1) + 1
    d_bolck_w = dilations[1] * (f_w - 1) + 1
    out_h = (in_h - 1) * stride[0] + d_bolck_h
    out_w = (in_w - 1) * stride[1] + d_bolck_w
Z
deconv  
zchen0211 已提交
19 20 21 22 23 24 25 26 27 28 29 30

    out = np.zeros((in_n, out_c, out_h, out_w))

    for n in range(in_n):
        for i in range(in_h):
            for j in range(in_w):
                input_masked = input_[n, :, i, j]  # (c)
                input_masked = np.reshape(input_masked, (in_c, 1, 1))
                input_masked = np.tile(input_masked, (1, f_h, f_w))

                for k in range(out_c):
                    tmp_out = np.sum(input_masked * filter_[:, k, :, :], axis=0)
C
chengduoZH 已提交
31 32 33
                    i1, i2 = i * stride[0], i * stride[0] + d_bolck_h
                    j1, j2 = j * stride[0], j * stride[0] + d_bolck_h
                    out[n, k, i1:i2:dilations[0], j1:j2:dilations[1]] += tmp_out
Z
deconv  
zchen0211 已提交
34

C
chengduoZH 已提交
35
    out = out[:, :, pad[0]:out_h - pad[0], pad[1]:out_w - pad[1]]
Z
deconv  
zchen0211 已提交
36 37 38
    return out


Z
zchen0211 已提交
39
class TestConv2dTransposeOp(OpTest):
Z
deconv  
zchen0211 已提交
40
    def setUp(self):
Z
zchen0211 已提交
41
        # init as conv transpose
42
        self.use_cudnn = False
Z
deconv  
zchen0211 已提交
43 44 45 46 47 48 49 50 51 52
        self.init_op_type()
        self.init_test_case()

        input_ = np.random.random(self.input_size).astype("float32")
        filter_ = np.random.random(self.filter_size).astype("float32")

        self.inputs = {'Input': input_, 'Filter': filter_}
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
53 54 55
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
            'data_format': 'AnyLayout'  # TODO(dzhwinter) : should be fix latter
Z
deconv  
zchen0211 已提交
56
        }
C
chengduoZH 已提交
57 58 59 60

        output = conv2dtranspose_forward_naive(input_, filter_,
                                               self.attrs).astype('float32')

Z
deconv  
zchen0211 已提交
61 62 63
        self.outputs = {'Output': output}

    def test_check_output(self):
64 65 66 67 68
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
Z
deconv  
zchen0211 已提交
69

Z
zchen0211 已提交
70
    def test_check_grad_no_input(self):
71 72 73 74 75 76 77 78 79 80 81 82 83
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Filter'],
                'Output',
                max_relative_error=0.02,
                no_grad_set=set(['Input']))
        else:
            self.check_grad(
                ['Filter'],
                'Output',
                max_relative_error=0.02,
                no_grad_set=set(['Input']))
Z
zchen0211 已提交
84 85

    def test_check_grad_no_filter(self):
86 87 88 89 90 91 92 93 94 95 96 97 98
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Input'],
                'Output',
                max_relative_error=0.02,
                no_grad_set=set(['Filter']))
        else:
            self.check_grad(
                ['Input'],
                'Output',
                max_relative_error=0.02,
                no_grad_set=set(['Filter']))
Z
deconv  
zchen0211 已提交
99

Z
zchen0211 已提交
100
    def test_check_grad(self):
101 102 103 104 105 106 107 108 109 110
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place,
                set(['Input', 'Filter']),
                'Output',
                max_relative_error=0.02)
        else:
            self.check_grad(
                set(['Input', 'Filter']), 'Output', max_relative_error=0.02)
C
chengduoZH 已提交
111 112 113 114 115 116 117 118 119 120 121

    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.op_type = "conv2d_transpose"
Z
deconv  
zchen0211 已提交
122

Z
zchen0211 已提交
123

C
chengduoZH 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
class TestWithPad(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


class TestWithStride(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
chengduoZH 已提交
144 145 146 147 148 149 150 151 152 153
class TestWithDilation(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
chengduoZH 已提交
154
# ------------ test_cudnn ------------
155
class TestCUDNN(TestConv2dTransposeOp):
Z
deconv  
zchen0211 已提交
156
    def init_op_type(self):
157 158
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
Z
zchen0211 已提交
159

Z
deconv  
zchen0211 已提交
160

161
class TestCUDNNWithPad(TestWithPad):
C
chengduoZH 已提交
162 163 164 165 166 167 168 169 170
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
171 172
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
173 174


175
class TestCUDNNWithStride(TestWithStride):
C
chengduoZH 已提交
176 177 178 179 180 181 182 183 184
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
185 186
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
187 188 189


# #cudnn v5 does not support dilation conv.
190
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
191 192 193 194 195 196 197 198 199
#     def init_test_case(self):
#         self.pad = [1, 1]
#         self.stride = [2, 2]
#         self.dilations = [2, 2]
#         self.input_size = [2, 3, 5, 5]  # NCHW
#         f_c = self.input_size[1]
#         self.filter_size = [f_c, 6, 3, 3]
#
#     def init_op_type(self):
200
#         self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
201

Z
deconv  
zchen0211 已提交
202 203
if __name__ == '__main__':
    unittest.main()