mixed_vector.h 14.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

17
#include <algorithm>
D
dzhwinter 已提交
18
#include <initializer_list>
19
#include <memory>
Y
Yu Yang 已提交
20
#include <mutex>  // NOLINT
21
#include <utility>
D
dzhwinter 已提交
22
#include <vector>
23
#include "paddle/fluid/framework/details/cow_ptr.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
26
#include "paddle/fluid/memory/malloc.h"
27
#include "paddle/fluid/memory/memcpy.h"
Y
Yu Yang 已提交
28 29

#include "glog/logging.h"
D
dzhwinter 已提交
30 31 32 33

namespace paddle {
namespace framework {

34
#if defined(PADDLE_WITH_CUDA)
Y
Yu Yang 已提交
35 36
// Vector<T> implements the std::vector interface, and can get Data or
// MutableData from any place. The data will be synced implicitly inside.
D
dzhwinter 已提交
37
template <typename T>
Y
Yu Yang 已提交
38
class Vector {
D
dzhwinter 已提交
39
 public:
Y
Yu Yang 已提交
40
  using value_type = T;
41 42
  using iterator = typename std::vector<T>::iterator;
  using const_iterator = typename std::vector<T>::const_iterator;
C
chengduoZH 已提交
43

44 45 46 47 48 49 50 51 52 53 54
 private:
  // The actual class to implement vector logic
  class VectorData {
   public:
    VectorData() : flag_(kDataInCPU) {}
    VectorData(size_t count, const T &value)
        : cpu_(count, value), flag_(kDataInCPU) {}
    VectorData(std::initializer_list<T> init) : cpu_(init), flag_(kDataInCPU) {}
    template <typename U>
    explicit VectorData(const std::vector<U> &dat)
        : cpu_(dat), flag_(kDataInCPU) {}
Y
Yu Yang 已提交
55
    ~VectorData() {}
56 57 58 59 60 61

    VectorData(const VectorData &o) {
      o.ImmutableCPU();
      cpu_ = o.cpu_;
      flag_ = kDataInCPU;
    }
C
chengduoZH 已提交
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    VectorData &operator=(const VectorData &o) {
      o.ImmutableCPU();
      cpu_ = o.cpu_;
      flag_ = kDataInCPU;
      return *this;
    }

    T &operator[](size_t i) {
      MutableCPU();
      return cpu_[i];
    }

    const T &operator[](size_t i) const {
      ImmutableCPU();
      return cpu_[i];
    }

    size_t size() const { return cpu_.size(); }

    iterator begin() {
      MutableCPU();
      return cpu_.begin();
    }

    iterator end() {
      MutableCPU();
      return cpu_.end();
    }

    T &front() {
      MutableCPU();
      return cpu_.front();
    }

    T &back() {
      MutableCPU();
      return cpu_.back();
    }

    const_iterator begin() const {
      ImmutableCPU();
      return cpu_.begin();
    }

    const_iterator end() const {
      ImmutableCPU();
      return cpu_.end();
    }

    const T &back() const {
      ImmutableCPU();
      return cpu_.back();
    }

    T *data() { return &(*this)[0]; }

    const T *data() const { return &(*this)[0]; }

    const T &front() const {
      ImmutableCPU();
      return cpu_.front();
    }

    // assign this from iterator.
    // NOTE: the iterator must support `end-begin`
    template <typename Iter>
    void assign(Iter begin, Iter end) {
      MutableCPU();
      cpu_.assign(begin, end);
    }

    // push_back. If the previous capacity is not enough, the memory will
    // double.
    void push_back(T elem) {
      MutableCPU();
      cpu_.push_back(elem);
    }

    // extend a vector by iterator.
    // NOTE: the iterator must support end-begin
    template <typename It>
    void Extend(It begin, It end) {
      MutableCPU();
      auto out_it = std::back_inserter<std::vector<T>>(this->cpu_);
      std::copy(begin, end, out_it);
    }

    // resize the vector
    void resize(size_t size) {
      MutableCPU();
      cpu_.resize(size);
    }

    // get cuda ptr. immutable
    const T *CUDAData(platform::Place place) const {
      PADDLE_ENFORCE(platform::is_gpu_place(place),
                     "CUDA Data must on CUDA place");
      ImmutableCUDA(place);
161
      return reinterpret_cast<T *>(gpu_->ptr());
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    }

    // get cuda ptr. mutable
    T *CUDAMutableData(platform::Place place) {
      const T *ptr = CUDAData(place);
      flag_ = kDirty | kDataInCUDA;
      return const_cast<T *>(ptr);
    }

    // clear
    void clear() {
      cpu_.clear();
      flag_ = kDirty | kDataInCPU;
    }

    size_t capacity() const { return cpu_.capacity(); }

    // reserve data
Y
Yu Yang 已提交
180
    void reserve(size_t size) const { cpu_.reserve(size); }
181 182 183 184 185 186 187 188 189 190 191 192 193

    // implicit cast operator. Vector can be cast to std::vector implicitly.
    operator std::vector<T>() const {
      ImmutableCPU();
      return cpu_;
    }

    bool operator==(const VectorData &other) const {
      ImmutableCPU();
      other.ImmutableCPU();
      return cpu_ == other.cpu_;
    }

Y
Yu Yang 已提交
194 195
    std::mutex &Mutex() const { return mtx_; }

196 197 198 199 200
    boost::optional<platform::CUDAPlace> CUDAPlace() const {
      return gpu_ == nullptr
                 ? boost::none
                 : boost::optional<platform::CUDAPlace>(
                       boost::get<platform::CUDAPlace>(gpu_->place()));
Y
Yu Yang 已提交
201 202
    }

203 204 205 206 207 208 209 210 211 212
   private:
    enum DataFlag {
      kDataInCPU = 0x01,
      kDataInCUDA = 0x02,
      // kDirty means the data has been changed in one device.
      kDirty = 0x10
    };

    void CopyToCPU() const {
      // COPY GPU Data To CPU
Y
Yu Yang 已提交
213
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
214
          platform::DeviceContextPool::Instance().Get(gpu_->place()));
Y
Yu Yang 已提交
215
      auto stream = dev_ctx->stream();
216
      void *src = gpu_->ptr();
217
      void *dst = cpu_.data();
P
peizhilin 已提交
218 219
      paddle::memory::Copy(platform::CPUPlace(), dst, CUDAPlace().get(), src,
                           gpu_->size(), stream);
Y
Yu Yang 已提交
220
      dev_ctx->Wait();
221 222 223 224 225
    }

    void MutableCPU() {
      if (IsInCUDA() && IsDirty()) {
        CopyToCPU();
226
      }
227
      flag_ = kDirty | kDataInCPU;
228
    }
C
chengduoZH 已提交
229

230 231 232 233 234 235
    void ImmutableCUDA(platform::Place place) const {
      if (IsDirty()) {
        if (IsInCPU()) {
          CopyCPUDataToCUDA(place);
          UnsetFlag(kDirty);
          SetFlag(kDataInCUDA);
236
        } else if (IsInCUDA() && !(place == gpu_->place())) {
Y
Yu Yang 已提交
237
          PADDLE_THROW("This situation should not happen");
238 239 240 241 242 243 244 245 246 247
          // Still dirty
        } else {
          // Dirty && DataInCUDA && Device is same
          // Do nothing
        }
      } else {
        if (!IsInCUDA()) {
          // Even data is not dirty. However, data is not in CUDA. Copy data.
          CopyCPUDataToCUDA(place);
          SetFlag(kDataInCUDA);
248
        } else if (!(place == gpu_->place())) {
Y
Yu Yang 已提交
249
          PADDLE_THROW("This situation should not happen.");
250 251 252 253 254
        } else {
          // Not Dirty && DataInCUDA && Device is same
          // Do nothing.
        }
      }
255
    }
256 257 258

    void CopyCPUDataToCUDA(const platform::Place &place) const {
      void *src = cpu_.data();
259 260
      gpu_ = memory::Alloc(place, cpu_.size() * sizeof(T));
      void *dst = gpu_->ptr();
Y
Yu Yang 已提交
261 262 263
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          platform::DeviceContextPool::Instance().Get(place));
      auto stream = dev_ctx->stream();
P
peizhilin 已提交
264 265
      paddle::memory::Copy(CUDAPlace().get(), dst, platform::CPUPlace(), src,
                           gpu_->size(), stream);
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    }

    void ImmutableCPU() const {
      if (IsDirty() && !IsInCPU()) {  // If data has been changed in CUDA, or
                                      // CPU has no data.
        CopyToCPU();
        UnsetFlag(kDirty);
      }
      SetFlag(kDataInCPU);
    }

    void UnsetFlag(int flag) const { flag_ &= ~flag; }
    void SetFlag(int flag) const { flag_ |= flag; }

    bool IsDirty() const { return flag_ & kDirty; }

    bool IsInCUDA() const { return flag_ & kDataInCUDA; }

    bool IsInCPU() const { return flag_ & kDataInCPU; }

    mutable std::vector<T> cpu_;
P
peizhilin 已提交
287
    mutable paddle::memory::AllocationPtr gpu_;
288
    mutable int flag_;
Y
Yu Yang 已提交
289 290

    mutable std::mutex mtx_;
291 292 293 294 295 296 297 298 299 300 301 302
  };

 public:
  // Default ctor. Create empty Vector
  Vector() : m_(new VectorData()) {}

  // Fill vector with value. The vector size is `count`.
  explicit Vector(size_t count, const T &value = T())
      : m_(new VectorData(count, value)) {}

  // Ctor with init_list
  Vector(std::initializer_list<T> init) : m_(new VectorData(init)) {}
Y
Yu Yang 已提交
303

Y
Yu Yang 已提交
304
  // implicit cast from std::vector.
Y
Yu Yang 已提交
305
  template <typename U>
306
  Vector(const std::vector<U> &dat) : m_(new VectorData(dat)) {  // NOLINT
Y
Yu Yang 已提交
307 308
  }

Y
Yu Yang 已提交
309
  // Copy ctor
310
  Vector(const Vector<T> &other) { m_ = other.m_; }
Y
Yu Yang 已提交
311

Y
Yu Yang 已提交
312
  // Copy operator
313
  Vector<T> &operator=(const Vector<T> &other) {
314
    m_ = other.m_;
Y
Yu Yang 已提交
315 316 317
    return *this;
  }

Y
Yu Yang 已提交
318
  // Move ctor
319
  Vector(Vector<T> &&other) { m_ = std::move(other.m_); }
D
dzhwinter 已提交
320

Y
Yu Yang 已提交
321
  // CPU data access method. Mutable.
Y
Yu Yang 已提交
322
  T &operator[](size_t i) { return (*m_.MutableData())[i]; }
Y
Yu Yang 已提交
323

Y
Yu Yang 已提交
324
  // CPU data access method. Immutable.
Y
Yu Yang 已提交
325
  const T &operator[](size_t i) const { return m_.Data()[i]; }
Y
Yu Yang 已提交
326

Y
Yu Yang 已提交
327
  // std::vector iterator methods. Based on CPU data access method
Y
Yu Yang 已提交
328
  size_t size() const { return m_.Data().size(); }
Y
Yu Yang 已提交
329

Y
Yu Yang 已提交
330
  iterator begin() { return m_.MutableData()->begin(); }
Y
Yu Yang 已提交
331

Y
Yu Yang 已提交
332
  iterator end() { return m_.MutableData()->end(); }
Y
Yu Yang 已提交
333

Y
Yu Yang 已提交
334
  T &front() { return m_.MutableData()->front(); }
Y
Yu Yang 已提交
335

Y
Yu Yang 已提交
336
  T &back() { return m_.MutableData()->back(); }
Y
Yu Yang 已提交
337

Y
Yu Yang 已提交
338
  const_iterator begin() const { return m_.Data().begin(); }
Y
Yu Yang 已提交
339

Y
Yu Yang 已提交
340
  const_iterator end() const { return m_.Data().end(); }
341

342
  const_iterator cbegin() const { return begin(); }
Y
Yu Yang 已提交
343

344
  const_iterator cend() const { return end(); }
Y
Yu Yang 已提交
345

Y
Yu Yang 已提交
346
  const T &back() const { return m_.Data().back(); }
Y
Yu Yang 已提交
347

Y
Yu Yang 已提交
348
  T *data() { return m_.MutableData()->data(); }
Y
Yu Yang 已提交
349

Y
Yu Yang 已提交
350
  const T *data() const { return m_.Data().data(); }
Y
Yu Yang 已提交
351

Y
Yu Yang 已提交
352
  const T &front() const { return m_.Data().front(); }
Y
Yu Yang 已提交
353
  // end of std::vector iterator methods
Y
Yu Yang 已提交
354

Y
Yu Yang 已提交
355 356
  // assign this from iterator.
  // NOTE: the iterator must support `end-begin`
Y
Yu Yang 已提交
357 358
  template <typename Iter>
  void assign(Iter begin, Iter end) {
Y
Yu Yang 已提交
359
    m_.MutableData()->assign(begin, end);
Y
Yu Yang 已提交
360 361
  }

Y
Yu Yang 已提交
362 363
  // push_back. If the previous capacity is not enough, the memory will
  // double.
Y
Yu Yang 已提交
364
  void push_back(T elem) { m_.MutableData()->push_back(elem); }
D
dzhwinter 已提交
365

Y
Yu Yang 已提交
366 367 368 369
  // extend a vector by iterator.
  // NOTE: the iterator must support end-begin
  template <typename It>
  void Extend(It begin, It end) {
Y
Yu Yang 已提交
370
    m_.MutableData()->Extend(begin, end);
Y
Yu Yang 已提交
371 372 373
  }

  // resize the vector
C
refine  
chengduoZH 已提交
374
  void resize(size_t size) {
375
    if (m_.Data().size() != size) {
Y
Yu Yang 已提交
376
      m_.MutableData()->resize(size);
C
refine  
chengduoZH 已提交
377 378
    }
  }
D
dzhwinter 已提交
379

Y
Yu Yang 已提交
380
  // get cuda ptr. immutable
C
refine  
chengduoZH 已提交
381
  const T *CUDAData(platform::Place place) const {
Y
Yu Yang 已提交
382 383 384 385
    {
      auto &mtx = m_.Data().Mutex();
      std::lock_guard<std::mutex> guard(mtx);
      auto cuda_place = m_.Data().CUDAPlace();
386 387
      if (cuda_place == boost::none ||
          cuda_place == boost::get<platform::CUDAPlace>(place)) {
Y
Yu Yang 已提交
388 389 390 391 392 393
        return m_.Data().CUDAData(place);
      }
    }
    // If m_ contains CUDAData in a different place. Detach manually.
    m_.Detach();
    return CUDAData(place);
C
refine  
chengduoZH 已提交
394
  }
D
dzhwinter 已提交
395

Y
Yu Yang 已提交
396
  // get cuda ptr. mutable
397
  T *CUDAMutableData(platform::Place place) {
Y
Yu Yang 已提交
398 399 400 401
    {
      auto &mtx = m_.Data().Mutex();
      std::lock_guard<std::mutex> guard(mtx);
      auto cuda_place = m_.Data().CUDAPlace();
402 403
      if (cuda_place == boost::none ||
          cuda_place == boost::get<platform::CUDAPlace>(place)) {
Y
Yu Yang 已提交
404 405 406 407 408 409
        return m_.MutableData()->CUDAMutableData(place);
      }
    }
    // If m_ contains CUDAData in a different place. Detach manually.
    m_.Detach();
    return CUDAMutableData(place);
Y
Yu Yang 已提交
410 411
  }

Y
Yu Yang 已提交
412
  // clear
Y
Yu Yang 已提交
413
  void clear() { m_.MutableData()->clear(); }
Y
Yu Yang 已提交
414

Y
Yu Yang 已提交
415
  size_t capacity() const { return m_.Data().capacity(); }
Y
Yu Yang 已提交
416

Y
Yu Yang 已提交
417
  // reserve data
Y
Yu Yang 已提交
418
  void reserve(size_t size) { m_.Data().reserve(size); }
Y
Yu Yang 已提交
419

Y
Yu Yang 已提交
420
  // the unify method to access CPU or CUDA data. immutable.
421
  const T *Data(platform::Place place) const {
Y
Yu Yang 已提交
422 423 424
    if (platform::is_gpu_place(place)) {
      return CUDAData(place);
    } else {
425
      return data();
Y
Yu Yang 已提交
426 427 428
    }
  }

Y
Yu Yang 已提交
429
  // the unify method to access CPU or CUDA data. mutable.
430
  T *MutableData(platform::Place place) {
Y
Yu Yang 已提交
431 432
    if (platform::is_gpu_place(place)) {
      return CUDAMutableData(place);
433
    } else {
Y
Yu Yang 已提交
434
      return data();
435 436 437
    }
  }

Y
Yu Yang 已提交
438
  // implicit cast operator. Vector can be cast to std::vector implicitly.
Y
Yu Yang 已提交
439
  operator std::vector<T>() const { return m_.Data(); }
Y
Yu Yang 已提交
440

441
  bool operator==(const Vector<T> &other) const {
Y
Yu Yang 已提交
442
    if (size() != other.size()) return false;
443 444 445
    auto it1 = cbegin();
    auto it2 = other.cbegin();
    for (; it1 < cend(); ++it1, ++it2) {
Y
Yu Yang 已提交
446 447 448 449 450 451
      if (*it1 != *it2) {
        return false;
      }
    }
    return true;
  }
D
dzhwinter 已提交
452

453
  const void *Handle() const { return &m_.Data(); }
454

455 456
 private:
  // Vector is an COW object.
Y
Yu Yang 已提交
457
  mutable details::COWPtr<VectorData> m_;
Y
Yu Yang 已提交
458
};
D
dzhwinter 已提交
459

460 461 462 463 464 465
#else  // PADDLE_WITH_CUDA

template <typename T>
class CPUVector : public std::vector<T, std::allocator<T>> {
 public:
  CPUVector() : std::vector<T>() {}
466
  CPUVector(size_t count, const T &value = T())  // NOLINT
467 468
      : std::vector<T>(count, value) {}
  CPUVector(std::initializer_list<T> init) : std::vector<T>(init) {}
469 470
  CPUVector(const std::vector<T> &other) : std::vector<T>(other) {}  // NOLINT
  CPUVector(const CPUVector<T> &other) : std::vector<T>(other) {}
471
  CPUVector(CPUVector<T> &&other) : std::vector<T>(std::move(other)) {}
472
  CPUVector(std::vector<T> &&other)  // NOLINT
473
      : std::vector<T>(std::move(other)) {}
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
  CPUVector &operator=(const CPUVector &other) {
    this->assign(other.begin(), other.end());
    return *this;
  }
  CPUVector &operator=(const std::vector<T> &other) {
    this->assign(other.begin(), other.end());
    return *this;
  }

  friend std::ostream &operator<<(std::ostream &os, const CPUVector<T> &other) {
    std::stringstream ss;
    for (auto v : other) {
      os << v << " ";
    }
    return os;
  }

  T &operator[](size_t id) { return this->at(id); }

  const T &operator[](size_t id) const { return this->at(id); }

  template <typename D>
  void Extend(const D &begin, const D &end) {
    this->reserve(this->size() + size_t(end - begin));
    this->insert(this->end(), begin, end);
  }
S
sneaxiy 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526

  const T *CUDAData(platform::Place place) const {
    PADDLE_THROW(
        "Vector::CUDAData() method is not supported in CPU-only version");
  }

  T *CUDAMutableData(platform::Place place) {
    PADDLE_THROW(
        "Vector::CUDAMutableData() method is not supported in CPU-only "
        "version");
  }

  const T *Data(platform::Place place) const {
    PADDLE_ENFORCE(
        platform::is_cpu_place(place),
        "Vector::Data() method is not supported when not in CPUPlace");
    return this->data();
  }

  T *MutableData(platform::Place place) {
    PADDLE_ENFORCE(
        platform::is_cpu_place(place),
        "Vector::MutableData() method is not supported when not in CPUPlace");
    return this->data();
  }

  const void *Handle() const { return static_cast<const void *>(this); }
527 528 529 530 531 532 533 534
};

template <typename T>
using Vector = CPUVector<T>;

#endif  // PADDLE_WITH_CUDA

};  // namespace framework
D
dzhwinter 已提交
535
}  // namespace paddle