fused_gate_attention.h 24.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
#include "paddle/fluid/operators/transpose_op.cu.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/gpudnn/softmax_gpudnn.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

inline std::string MemoryDebugString(const Tensor& t) {
  std::stringstream ss;
  ss << "shape=[" << t.dims()
     << "], size=" << static_cast<float>(t.memory_size()) / (1 << 20)
     << " MB, ptr=" << t.data();

  size_t total = 0;
  size_t available = 0;
  platform::GpuMemoryUsage(&available, &total);
  ss << "; memory allocated="
     << static_cast<float>(total - available) / (1 << 20) << " MB";
  return ss.str();
}

template <typename T>
struct TernaryAddFunctor {
  inline HOSTDEVICE T operator()(T a, T b, T c) const { return a + b + c; }
};

template <typename T>
struct GateAttentionConfig {
 public:
  int64_t batch_size;
  int64_t seq_len_m;
  int64_t seq_len_r;
  int64_t q_dim;
  int64_t kv_dim;
  int64_t key_dim;
  int64_t m_size;
  int64_t num_heads;

  phi::DDim qkv_out_dims;
  phi::DDim qkv_transpose_out_dims;

  phi::DDim q_out_dims;
  phi::DDim kv_out_dims;
  phi::DDim q_transpose_out_dims;
  phi::DDim kv_transpose_out_dims;

  phi::DDim qk_out_dims;
  phi::DDim softmax_out_dims;
  phi::DDim qktv_out_dims;
  phi::DDim gate_out_dims;

  GateAttentionConfig(const Tensor* query, const Tensor* key,
                      const Tensor* query_weight, const Tensor* qkv_weight,
                      bool merge_qkv) {
    // query: shape=[batch_size, seq_len_m, seq_len_r, q_dim]
    batch_size = query->dims()[0];
    seq_len_m = query->dims()[1];
    seq_len_r = query->dims()[2];
    q_dim = query->dims()[3];

    if (merge_qkv) {
      PADDLE_ENFORCE_NOT_NULL(
          qkv_weight,
          platform::errors::NotFound("The input qkv_weight can not be nullptr "
                                     "when merge_qkv is true."));

      // When q_dim == kv_dim, QKV matmul can be computed merged.
      // qkv_weight: shape=[3, num_heads, key_dim, q_dim]
      num_heads = qkv_weight->dims()[1];
      key_dim = qkv_weight->dims()[2];
      m_size = seq_len_r;
      kv_dim = q_dim;

      qkv_out_dims = {batch_size, seq_len_m, seq_len_r, 3, num_heads, key_dim};
      qkv_transpose_out_dims = {3,         batch_size, seq_len_m,
                                num_heads, seq_len_r,  key_dim};
    } else {
      PADDLE_ENFORCE_NOT_NULL(
          key,
          platform::errors::NotFound(
              "The input key can not be nullptr when merge_qkv is false."));
      PADDLE_ENFORCE_NOT_NULL(
          query_weight,
          platform::errors::NotFound("The input query_weight can not be "
                                     "nullptr when merge_qkv is false."));

      // When q_dim != kv_dim, QKV matmul must be computed saparately.
      // key: shape=[batch_size, seq_len_m, m_size, kv_dim]
      // query_w: shape=[q_dim, num_heads, key_dim]
      num_heads = query_weight->dims()[1];
      key_dim = query_weight->dims()[2];
      m_size = key->dims()[2];
      kv_dim = key->dims()[3];

      q_out_dims = {batch_size, seq_len_m, seq_len_r, num_heads, key_dim};
      kv_out_dims = {batch_size, seq_len_m, m_size, num_heads, key_dim};
      q_transpose_out_dims = {batch_size, seq_len_m, num_heads, seq_len_r,
                              key_dim};
      kv_transpose_out_dims = {batch_size, seq_len_m, num_heads, m_size,
                               key_dim};
    }

    qk_out_dims = {batch_size, seq_len_m, num_heads, seq_len_r, m_size};
    softmax_out_dims = {batch_size, seq_len_m, num_heads, seq_len_r, m_size};
    qktv_out_dims = {batch_size, seq_len_m, num_heads, seq_len_r, key_dim};
    gate_out_dims = {batch_size, seq_len_m, seq_len_r, num_heads, key_dim};
  }

  int64_t GetQuerySize() const {
    return batch_size * seq_len_m * seq_len_r * num_heads * key_dim;
  }

  Tensor* GetQKVOut(const platform::CUDADeviceContext& dev_ctx) {
    if (!qkv_out.IsInitialized()) {
      qkv_out.Resize(qkv_out_dims);
      qkv_out.mutable_data<T>(dev_ctx.GetPlace());
      VLOG(4) << "qkv_out: " << MemoryDebugString(qkv_out);
    }
    return &qkv_out;
  }

  Tensor* GetQueryOut(const platform::CUDADeviceContext& dev_ctx) {
    if (!query_out.IsInitialized()) {
      query_out.Resize(q_out_dims);
      query_out.mutable_data<T>(dev_ctx.GetPlace());
      VLOG(4) << "query_out: " << MemoryDebugString(query_out);
    }
    return &query_out;
  }

  Tensor* GetKeyOut(const platform::CUDADeviceContext& dev_ctx) {
    if (!key_out.IsInitialized()) {
      key_out.Resize(kv_out_dims);
      key_out.mutable_data<T>(dev_ctx.GetPlace());
      VLOG(4) << "key_out: " << MemoryDebugString(key_out);
    }
    return &key_out;
  }

  Tensor* GetValueOut(const platform::CUDADeviceContext& dev_ctx) {
    if (!value_out.IsInitialized()) {
      value_out.Resize(kv_out_dims);
      value_out.mutable_data<T>(dev_ctx.GetPlace());
      VLOG(4) << "value_out: " << MemoryDebugString(value_out);
    }
    return &value_out;
  }

  Tensor* GetQKOut(const platform::CUDADeviceContext& dev_ctx,
                   Tensor* softmax_out) {
    // softmax_dim = qk_out_dim[-1] = qk_out_dim[rank - 1]
    int softmax_dim = m_size;
    if (!softmax_out || phi::UseCudnnSoftmax<T>(dev_ctx, softmax_dim, true)) {
      // Not sure whether cudnn softmax can execute inplace.
      if (!qkv_out.IsInitialized()) {
        qk_out.Resize(qk_out_dims);
        qk_out.mutable_data<T>(dev_ctx.GetPlace());
        VLOG(4) << "qk_out: " << MemoryDebugString(qk_out);
      }
      return &qk_out;
    } else {
      return softmax_out;
    }
  }

  void ClearQKVOut() {
    if (qkv_out.IsInitialized()) {
      qkv_out.clear();
    }
  }

  void ClearQKOut() {
    if (qk_out.IsInitialized()) {
      qk_out.clear();
    }
  }

 protected:
  Tensor qkv_out;
  // QKV is not merged
  Tensor query_out;
  Tensor key_out;
  Tensor value_out;
  // qk_out = BatchedGEMM(Q, K^T)
  // qk_out: shape=[batch_size, seq_len_m, num_heads, seq_len_r, m_size]
  // softmax_out = softmax(qk_out + nonbatched_bias + src_mask)
  // The shape of qk_out, softmax_out is the same, thus can be called inplace.
  Tensor qk_out;
};

template <typename T>
struct GateAttentionGradConfig : public GateAttentionConfig<T> {
 public:
  GateAttentionGradConfig(const Tensor* query, const Tensor* key,
                          const Tensor* query_weight, const Tensor* qkv_weight,
                          bool merge_qkv)
      : GateAttentionConfig<T>(query, key, query_weight, qkv_weight,
                               merge_qkv) {}

  Tensor* GetQKVOutGrad(const platform::CUDADeviceContext& dev_ctx) {
    if (!qkv_out_grad.IsInitialized()) {
      qkv_out_grad.Resize(this->qkv_out_dims);
      qkv_out_grad.mutable_data<T>(dev_ctx.GetPlace());
      VLOG(4) << "qkv_out_grad: " << MemoryDebugString(qkv_out_grad);
    }
    return &qkv_out_grad;
  }

  Tensor* GetQueryOutGrad(const platform::CUDADeviceContext& dev_ctx) {
    if (!query_out_grad.IsInitialized()) {
      query_out_grad.Resize(this->q_out_dims);
      query_out_grad.mutable_data<T>(dev_ctx.GetPlace());
      VLOG(4) << "query_out_grad: " << MemoryDebugString(query_out_grad);
    }
    return &query_out_grad;
  }

  Tensor* GetKeyOutGrad(const platform::CUDADeviceContext& dev_ctx) {
    if (!key_out_grad.IsInitialized()) {
      key_out_grad.Resize(this->kv_out_dims);
      key_out_grad.mutable_data<T>(dev_ctx.GetPlace());
      VLOG(4) << "key_out_grad: " << MemoryDebugString(key_out_grad);
    }
    return &key_out_grad;
  }

  Tensor* GetValueOutGrad(const platform::CUDADeviceContext& dev_ctx) {
    if (!value_out_grad.IsInitialized()) {
      value_out_grad.Resize(this->kv_out_dims);
      value_out_grad.mutable_data<T>(dev_ctx.GetPlace());
      VLOG(4) << "value_out_grad: " << MemoryDebugString(value_out_grad);
    }
    return &value_out_grad;
  }

  Tensor* GetQKOutGrad(const platform::CUDADeviceContext& dev_ctx,
                       Tensor* softmax_out_grad) {
    // softmax_dim = qk_out_dim[-1] = qk_out_dim[rank - 1]
    int softmax_dim = this->m_size;
    if (!softmax_out_grad ||
        phi::UseCudnnSoftmax<T>(dev_ctx, softmax_dim, true)) {
      if (!qk_out_grad.IsInitialized()) {
        qk_out_grad.Resize(this->qk_out_dims);
        qk_out_grad.mutable_data<T>(dev_ctx.GetPlace());
        VLOG(4) << "qk_out_grad: " << MemoryDebugString(qk_out_grad);
      }
      return &qk_out_grad;
    } else {
      return softmax_out_grad;
    }
  }

 protected:
  Tensor qkv_out_grad;
  Tensor query_out_grad;
  Tensor key_out_grad;
  Tensor value_out_grad;
  Tensor qk_out_grad;
};

template <typename T>
class FMHAGateRef {
 public:
  FMHAGateRef(const platform::CUDADeviceContext& dev_ctx, bool merge_qkv)
      : dev_ctx_(dev_ctx), merge_qkv_(merge_qkv) {}

  void ComputeForward(const Tensor* nonbatched_bias, const Tensor* src_mask,
                      Tensor* q_transpose_out, Tensor* k_transpose_out,
                      Tensor* v_transpose_out, Tensor* qkv_transpose_out,
                      Tensor* softmax_out, Tensor* fmha_out,
                      GateAttentionConfig<T>* config) {
    T* q_ptr = nullptr;
    T* k_ptr = nullptr;
    T* v_ptr = nullptr;
    if (merge_qkv_) {
      // qkv_transpose_out = transpose(qkv_out)
      PADDLE_ENFORCE_NOT_NULL(
          qkv_transpose_out,
          platform::errors::NotFound("The input qkv_transpose_out can not be "
                                     "nullptr when merge_qkv is true."));

      Tensor* qkv_out = config->GetQKVOut(dev_ctx_);
      ComputeQKVTransposeForward(*qkv_out, qkv_transpose_out);
      config->ClearQKVOut();

      // q_size == k_size
      int64_t q_size = config->GetQuerySize();
      q_ptr = qkv_transpose_out->data<T>();
      k_ptr = q_ptr + q_size;
      v_ptr = k_ptr + q_size;
    } else {
      PADDLE_ENFORCE_NOT_NULL(
          q_transpose_out,
          platform::errors::NotFound("The input q_transpose_out can not be "
                                     "nullptr when merge_qkv is false."));
      PADDLE_ENFORCE_NOT_NULL(
          k_transpose_out,
          platform::errors::NotFound("The input k_transpose_out can not be "
                                     "nullptr when merge_qkv is false."));
      PADDLE_ENFORCE_NOT_NULL(
          v_transpose_out,
          platform::errors::NotFound("The input v_transpose_out can not be "
                                     "nullptr when merge_qkv is false."));

      Tensor* query_out = config->GetQueryOut(dev_ctx_);
      Tensor* key_out = config->GetKeyOut(dev_ctx_);
      Tensor* value_out = config->GetValueOut(dev_ctx_);
      ComputeQKVTransposeForward(*query_out, *key_out, *value_out,
                                 q_transpose_out, k_transpose_out,
                                 v_transpose_out);

      // q_size != k_size
      q_ptr = q_transpose_out->data<T>();
      k_ptr = k_transpose_out->data<T>();
      v_ptr = v_transpose_out->data<T>();
    }

    // qk_out = BatchedGEMM(Q, K^T)
    // [batch_size, seq_len_m, num_heads, seq_len_r, key_dim] *
    //                [batch_size, seq_len_m, num_heads, m_size, key_dim]
    // -> [batch_size, seq_len_m, num_heads, seq_len_r, m_size]
    Tensor* qk_out = config->GetQKOut(dev_ctx_, softmax_out);
    T* qk_out_ptr = qk_out->data<T>();

    int64_t gemm_batch_size =
        config->batch_size * config->seq_len_m * config->num_heads;
    int64_t gemm_m = config->seq_len_r;
    int64_t gemm_n = config->m_size;
    int64_t gemm_k = config->key_dim;

    T alpha = static_cast<T>(1.0 / sqrt(config->key_dim));
    ComputeBatchedGEMM(q_ptr, k_ptr, qk_out_ptr, false, true, gemm_m, gemm_n,
                       gemm_k, gemm_batch_size, alpha);

    // softmax_out = softmax(qk_out + nonbatched_bias + src_mask)
    ComputeBiasMaskSoftmaxForward(nonbatched_bias, src_mask, qk_out,
                                  softmax_out);
    config->ClearQKOut();

    // qktv_out = BatchedGEMM(softmax_out, V)
    // [batch_size, seq_len_m, num_heads, seq_len_r, m_size] *
    //               [batch_size, seq_len_m, num_heads, m_size, key_dim]
    // -> [batch_size, seq_len_m, num_heads, seq_len_r, key_dim]
    Tensor qktv_out;
    qktv_out.Resize(config->qktv_out_dims);
    T* qktv_out_ptr = qktv_out.mutable_data<T>(dev_ctx_.GetPlace());

    gemm_m = config->seq_len_r;
    gemm_n = config->key_dim;
    gemm_k = config->m_size;

    T* softmax_out_ptr = softmax_out->data<T>();
    ComputeBatchedGEMM(softmax_out_ptr, v_ptr, qktv_out_ptr, false, false,
                       gemm_m, gemm_n, gemm_k, gemm_batch_size);

    // fmha_out = transpose(qktv_out)
    ComputeQKTVTransposeForward(qktv_out, fmha_out);
  }

  void ComputeBackward(const Tensor* q_transpose_out,
                       const Tensor* k_transpose_out,
                       const Tensor* v_transpose_out,
                       const Tensor* qkv_transpose_out,
                       const Tensor* softmax_out, const Tensor* fmha_out_grad,
                       Tensor* src_mask_grad, Tensor* nonbatched_bias_grad,
                       GateAttentionGradConfig<T>* config) {
    const T* q_ptr = nullptr;
    const T* k_ptr = nullptr;
    const T* v_ptr = nullptr;

    T* q_grad_ptr = nullptr;
    T* k_grad_ptr = nullptr;
    T* v_grad_ptr = nullptr;

    Tensor q_transpose_out_grad;
    Tensor k_transpose_out_grad;
    Tensor v_transpose_out_grad;
    Tensor qkv_transpose_out_grad;
    if (merge_qkv_) {
      PADDLE_ENFORCE_NOT_NULL(
          qkv_transpose_out,
          platform::errors::NotFound("The input qkv_transpose_out can not be "
                                     "nullptr when merge_qkv is true."));

      int64_t q_size = config->GetQuerySize();
      q_ptr = qkv_transpose_out->data<T>();
      k_ptr = q_ptr + q_size;
      v_ptr = k_ptr + q_size;

      qkv_transpose_out_grad.Resize(config->qkv_transpose_out_dims);

      q_grad_ptr = qkv_transpose_out_grad.mutable_data<T>(dev_ctx_.GetPlace());
      k_grad_ptr = q_grad_ptr + q_size;
      v_grad_ptr = k_grad_ptr + q_size;
    } else {
      PADDLE_ENFORCE_NOT_NULL(
          q_transpose_out,
          platform::errors::NotFound("The input q_transpose_out can not be "
                                     "nullptr when merge_qkv is false."));
      PADDLE_ENFORCE_NOT_NULL(
          k_transpose_out,
          platform::errors::NotFound("The input k_transpose_out can not be "
                                     "nullptr when merge_qkv is false."));
      PADDLE_ENFORCE_NOT_NULL(
          v_transpose_out,
          platform::errors::NotFound("The input v_transpose_out can not be "
                                     "nullptr when merge_qkv is false."));

      q_ptr = q_transpose_out->data<T>();
      k_ptr = k_transpose_out->data<T>();
      v_ptr = v_transpose_out->data<T>();

      q_transpose_out_grad.Resize(config->q_transpose_out_dims);
      k_transpose_out_grad.Resize(config->kv_transpose_out_dims);
      v_transpose_out_grad.Resize(config->kv_transpose_out_dims);

      q_grad_ptr = q_transpose_out_grad.mutable_data<T>(dev_ctx_.GetPlace());
      k_grad_ptr = k_transpose_out_grad.mutable_data<T>(dev_ctx_.GetPlace());
      v_grad_ptr = v_transpose_out_grad.mutable_data<T>(dev_ctx_.GetPlace());
    }

    Tensor softmax_out_grad;
    softmax_out_grad.Resize(config->softmax_out_dims);
    softmax_out_grad.mutable_data<T>(dev_ctx_.GetPlace());

    int64_t gemm_batch_size =
        config->batch_size * config->seq_len_m * config->num_heads;
    {
      // Forward: fmha_out = transpose(qktv_out)
      Tensor qktv_out_grad;
      qktv_out_grad.Resize(config->qktv_out_dims);
      T* qktv_out_grad_ptr = qktv_out_grad.mutable_data<T>(dev_ctx_.GetPlace());
      ComputeQKTVTransposeBackward(*fmha_out_grad, &qktv_out_grad);

      // Forward: qktv_out = BatchedGEMM(softmax_out, V)
      // Backward:
      //  V_grad = BatchedGEMM(softmax_out^T, qktv_out_grad) (dy = x^T * dout)
      int64_t gemm_m = config->m_size;
      int64_t gemm_n = config->key_dim;
      int64_t gemm_k = config->seq_len_r;

      const T* softmax_out_ptr = softmax_out->data<T>();
      ComputeBatchedGEMM(softmax_out_ptr, qktv_out_grad_ptr, v_grad_ptr, true,
                         false, gemm_m, gemm_n, gemm_k, gemm_batch_size);

      // Backward: softmax_out_grad = qktv_out_grad * V^T (dx = dout * y^T)
      gemm_m = config->seq_len_r;
      gemm_n = config->m_size;
      gemm_k = config->key_dim;

      T* softmax_out_grad_ptr = softmax_out_grad.data<T>();
      ComputeBatchedGEMM(qktv_out_grad_ptr, v_ptr, softmax_out_grad_ptr, false,
                         true, gemm_m, gemm_n, gemm_k, gemm_batch_size);
    }

    Tensor* qk_out_grad = config->GetQKOutGrad(dev_ctx_, &softmax_out_grad);
    ComputeBiasMaskSoftmaxBackward(&softmax_out_grad, softmax_out,
                                   src_mask_grad, qk_out_grad,
                                   nonbatched_bias_grad);

    // Forward: qk_out = BatchedGEMM(Q, K^T)
    // Backward: k_grad = BatchedGEMM(qk_out_grad^T, Q) (dy = dout^t * x)
    int64_t gemm_m = config->m_size;
    int64_t gemm_n = config->key_dim;
    int64_t gemm_k = config->seq_len_r;
    T alpha = static_cast<T>(1.0 / sqrt(config->key_dim));

    T* qk_out_grad_ptr = qk_out_grad->data<T>();
    ComputeBatchedGEMM(qk_out_grad_ptr, q_ptr, k_grad_ptr, true, false, gemm_m,
                       gemm_n, gemm_k, gemm_batch_size, alpha);

    // Backward: q_grad = BatchedGEMM(qk_out_grad, K) (dx = dout * y)
    gemm_m = config->seq_len_r;
    gemm_n = config->key_dim;
    gemm_k = config->m_size;
    ComputeBatchedGEMM(qk_out_grad_ptr, k_ptr, q_grad_ptr, false, false, gemm_m,
                       gemm_n, gemm_k, gemm_batch_size, alpha);

    if (merge_qkv_) {
      Tensor* qkv_out_grad = config->GetQKVOutGrad(dev_ctx_);
      ComputeQKVTransposeBackward(qkv_transpose_out_grad, qkv_out_grad);
    } else {
      Tensor* q_out_grad = config->GetQueryOutGrad(dev_ctx_);
      Tensor* k_out_grad = config->GetKeyOutGrad(dev_ctx_);
      Tensor* v_out_grad = config->GetValueOutGrad(dev_ctx_);
      ComputeQKVTransposeBackward(q_transpose_out_grad, k_transpose_out_grad,
                                  v_transpose_out_grad, q_out_grad, k_out_grad,
                                  v_out_grad);
    }
  }

  void ComputeQKVTransposeForward(const Tensor& q_out, const Tensor& k_out,
                                  const Tensor& v_out, Tensor* q_transpose_out,
                                  Tensor* k_transpose_out,
                                  Tensor* v_transpose_out) {
    int ndims = 5;
    std::vector<int> perm = {0, 1, 3, 2, 4};
    TransposeGPUKernelDriver<T>(dev_ctx_, ndims, q_out, perm, q_transpose_out);
    TransposeGPUKernelDriver<T>(dev_ctx_, ndims, k_out, perm, k_transpose_out);
    TransposeGPUKernelDriver<T>(dev_ctx_, ndims, v_out, perm, v_transpose_out);
  }

  void ComputeQKVTransposeBackward(const Tensor& q_transpose_out_grad,
                                   const Tensor& k_transpose_out_grad,
                                   const Tensor& v_transpose_out_grad,
                                   Tensor* q_out_grad, Tensor* k_out_grad,
                                   Tensor* v_out_grad) {
    int ndims = 5;
    std::vector<int> perm = {0, 1, 3, 2, 4};
    TransposeGPUKernelDriver<T>(dev_ctx_, ndims, q_transpose_out_grad, perm,
                                q_out_grad);
    TransposeGPUKernelDriver<T>(dev_ctx_, ndims, k_transpose_out_grad, perm,
                                k_out_grad);
    TransposeGPUKernelDriver<T>(dev_ctx_, ndims, v_transpose_out_grad, perm,
                                v_out_grad);
  }

  // [batch_size, seq_len_m, seq_len_r, 3, num_heads, key_dim] ->
  //         [3, batch_size, seq_len_m, num_heads, seq_len_r, key_dim]
  void ComputeQKVTransposeForward(const Tensor& qkv_out,
                                  Tensor* qkv_transpose_out) {
    int ndims = 6;
    std::vector<int> perm = {3, 0, 1, 4, 2, 5};
    TransposeGPUKernelDriver<T>(dev_ctx_, ndims, qkv_out, perm,
                                qkv_transpose_out);
  }

  void ComputeQKVTransposeBackward(const Tensor& qkv_transpose_out_grad,
                                   Tensor* qkv_out_grad) {
    int ndims = 6;
    std::vector<int> perm = {1, 2, 4, 0, 3, 5};
    TransposeGPUKernelDriver<T>(dev_ctx_, ndims, qkv_transpose_out_grad, perm,
                                qkv_out_grad);
  }

  // [batch_size, seq_len_m, num_head, seq_len_r, c] ->
  //         [batch_size, seq_len_m, seq_len_r, num_head, c]
  void ComputeQKTVTransposeForward(const Tensor& qktv_out, Tensor* fmha_out) {
    int ndims = 5;
    std::vector<int> perm = {0, 1, 3, 2, 4};
    TransposeGPUKernelDriver<T>(dev_ctx_, ndims, qktv_out, perm, fmha_out);
  }

  void ComputeQKTVTransposeBackward(const Tensor& fmha_out_grad,
                                    Tensor* qktv_out_grad) {
    int ndims = 5;
    std::vector<int> perm = {0, 1, 3, 2, 4};
    TransposeGPUKernelDriver<T>(dev_ctx_, ndims, fmha_out_grad, perm,
                                qktv_out_grad);
  }

  // qk_out = qk_out + nonbatched_bias + src_mask
  // softmax_out = softmax(src_mask_out)
  void ComputeBiasMaskSoftmaxForward(const Tensor* nonbatched_bias,
                                     const Tensor* src_mask, Tensor* qk_out,
                                     Tensor* softmax_out) {
    if (nonbatched_bias) {
      std::vector<const Tensor*> ins = {qk_out, nonbatched_bias, src_mask};
      std::vector<Tensor*> outs = {qk_out};
      phi::funcs::BroadcastKernel<ElementwiseType::kTernary, T, T>(
          dev_ctx_, ins, &outs, -1, TernaryAddFunctor<T>());
    } else {
      std::vector<const Tensor*> ins = {qk_out, src_mask};
      std::vector<Tensor*> outs = {qk_out};
      phi::funcs::BroadcastKernel<ElementwiseType::kBinary, T, T>(
          dev_ctx_, ins, &outs, -1, phi::funcs::AddFunctor<T>());
    }
    phi::SoftmaxForwardCUDAKernelDriver<T>(dev_ctx_, *qk_out, -1, softmax_out);
  }

  // src_mask_out = qk_out + nonbatched_bias + src_mask
  // softmax_out = softmax(src_mask_out)
  void ComputeBiasMaskSoftmaxBackward(const Tensor* softmax_out_grad,
                                      const Tensor* softmax_out,
                                      Tensor* src_mask_grad,
                                      Tensor* qk_out_grad,
                                      Tensor* nonbatched_bias_grad) {
    PADDLE_ENFORCE_NOT_NULL(
        qk_out_grad,
        platform::errors::NotFound("The qk_out_grad can not be nullptr."));

    PADDLE_ENFORCE_EQ(qk_out_grad->dims(), softmax_out->dims(),
                      platform::errors::InvalidArgument(
                          "The shape of qk_out_grad and softmax_out is "
                          "expected to be the same. But recieved qk_out_grad's "
                          "shape = %s, softmax_out's shape = %s.",
                          qk_out_grad->dims(), softmax_out->dims()));

    PADDLE_ENFORCE_EQ(src_mask_grad, nullptr,
                      platform::errors::InvalidArgument(
                          "src_mask_grad is expected to be nullptr."));

    phi::SoftmaxBackwardCUDAKernelDriver<T>(dev_ctx_, *softmax_out,
                                            *softmax_out_grad, -1, qk_out_grad);

    // [1, bs, num_head, seq_l, seq_l] -> [bs, num_head, seq_l, seq_l]
    if (nonbatched_bias_grad) {
      gpuStream_t stream = dev_ctx_.stream();
      TensorReduceImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
          dev_ctx_, *qk_out_grad, nonbatched_bias_grad,
          kps::IdentityFunctor<T>(), {0, 1}, stream);
    }
  }

 private:
  void ComputeBatchedGEMM(const T* a_ptr, const T* b_ptr, T* c_ptr,
                          bool trans_a, bool trans_b, int64_t m, int64_t n,
                          int64_t k, int64_t batch_size,
                          T alpha = static_cast<T>(1.0),
                          T beta = static_cast<T>(0.0)) {
    CBLAS_TRANSPOSE cblas_trans_a = trans_a ? CblasTrans : CblasNoTrans;
    CBLAS_TRANSPOSE cblas_trans_b = trans_b ? CblasTrans : CblasNoTrans;
    int64_t stride_a = m * k;
    int64_t stride_b = k * n;

    auto blas = phi::funcs::GetBlas<platform::CUDADeviceContext, T>(dev_ctx_);
    blas.BatchedGEMM(cblas_trans_a, cblas_trans_b, m, n, k, alpha, a_ptr, b_ptr,
                     beta, c_ptr, batch_size, stride_a, stride_b);
  }

  const platform::CUDADeviceContext& dev_ctx_;
  bool merge_qkv_;
};

}  // namespace operators
}  // namespace paddle