“a243bdfbcf2e2ad718d2140b66964187b4deab9e”上不存在“python/paddle/git@gitcode.net:BaiXuePrincess/Paddle.git”
parameter_prefetch.cc 7.6 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <set>
#include <string>
#include <vector>

#include "paddle/fluid/operators/distributed/parameter_prefetch.h"

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"

#include "paddle/fluid/operators/detail/macros.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"

namespace paddle {
namespace operators {
namespace distributed {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

Q
Qiao Longfei 已提交
40
static size_t GetSectionIndex(int64_t id,
Q
Qiao Longfei 已提交
41 42 43 44 45 46 47 48 49
                              const std::vector<int64_t>& abs_sections) {
  for (size_t i = 1; i < abs_sections.size(); ++i) {
    if (id < abs_sections[i]) {
      return i - 1;
    }
  }
  return abs_sections.size() - 1;
}

Q
Qiao Longfei 已提交
50
static std::vector<int64_t> ToAbsoluteSection(
Q
Qiao Longfei 已提交
51
    const std::vector<int>& height_sections) {
Q
Qiao Longfei 已提交
52 53 54 55 56 57 58 59 60
  std::vector<int64_t> abs_sections;
  abs_sections.resize(height_sections.size());
  abs_sections[0] = 0;
  for (size_t i = 1; i < height_sections.size(); ++i) {
    abs_sections[i] = height_sections[i - 1] + abs_sections[i - 1];
  }
  return abs_sections;
}

Q
Qiao Longfei 已提交
61
static std::vector<std::vector<int64_t>> SplitIds(
Q
Qiao Longfei 已提交
62
    const std::string& id_name, const std::vector<int>& height_section,
Q
Qiao Longfei 已提交
63
    framework::Scope* scope) {
Q
Qiao Longfei 已提交
64
  auto& id_tensor = scope->FindVar(id_name)->Get<framework::LoDTensor>();
Q
Qiao Longfei 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
  auto* id_data = id_tensor.data<int64_t>();
  std::set<int64_t> all_ids;
  for (size_t i = 0; i < id_tensor.numel(); ++i) {
    all_ids.insert(id_data[i]);
  }
  auto abs_sections = ToAbsoluteSection(height_section);
  std::vector<std::vector<int64_t>> splited_ids;
  splited_ids.resize(height_section.size() + 1);
  for (auto& id : all_ids) {
    auto section_index = GetSectionIndex(id, abs_sections);
    splited_ids[section_index].push_back(id - abs_sections[section_index]);
  }
  return splited_ids;
}

Q
Qiao Longfei 已提交
80
static void SplitIdsIntoMultipleVarsBySection(
Q
Qiao Longfei 已提交
81
    const std::string& id_name, const std::vector<std::string>& in_var_names,
Q
Qiao Longfei 已提交
82
    const std::vector<int>& height_section,
Q
Qiao Longfei 已提交
83 84
    const std::vector<std::vector<int64_t>>& splited_ids,
    framework::Scope* scope) {
Q
Qiao Longfei 已提交
85
  PADDLE_ENFORCE_EQ(in_var_names.size(), height_section.size(), "");
Q
Qiao Longfei 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

  auto place = platform::CPUPlace();

  for (size_t i = 0; i < in_var_names.size(); ++i) {
    auto* id_tensor =
        scope->Var(in_var_names[i])->GetMutable<framework::LoDTensor>();
    auto& ids = splited_ids[i];
    if (!ids.empty()) {
      auto* id_tensor_data = id_tensor->mutable_data<int64_t>(
          framework::make_ddim({static_cast<int64_t>(ids.size()), 1}), place);
      memcpy(id_tensor_data, ids.data(), sizeof(int64_t) * ids.size());
    }
  }
}

Q
Qiao Longfei 已提交
101
static void MergeMultipleVarsIntoOneBySection(
Q
Qiao Longfei 已提交
102 103
    const std::string& id_name, const std::string& out_name,
    const std::vector<std::string>& out_var_names,
Q
Qiao Longfei 已提交
104
    const std::vector<int>& height_section,
Q
Qiao Longfei 已提交
105 106
    const std::vector<std::vector<int64_t>>& splited_ids,
    const framework::ExecutionContext& context, framework::Scope* scope) {
Q
can run  
Qiao Longfei 已提交
107
  PADDLE_ENFORCE_EQ(out_var_names.size(), height_section.size(), "");
Q
Qiao Longfei 已提交
108 109 110 111

  auto cpu_place = platform::CPUPlace();

  auto abs_sections = ToAbsoluteSection(height_section);
Q
Qiao Longfei 已提交
112
  auto& id_tensor = scope->FindVar(id_name)->Get<framework::LoDTensor>();
Q
Qiao Longfei 已提交
113 114 115 116 117 118
  auto* id_data = id_tensor.data<int64_t>();
  std::unordered_map<int64_t, std::vector<size_t>> id_to_offset;
  for (size_t i = 0; i < id_tensor.numel(); ++i) {
    id_to_offset[id_data[i]].push_back(i);
  }

Q
Qiao Longfei 已提交
119 120
  auto* out_tensor =
      scope->FindVar(out_name)->GetMutable<framework::LoDTensor>();
Q
Qiao Longfei 已提交
121 122 123 124 125
  auto* out_tensor_data = out_tensor->mutable_data<float>(context.GetPlace());

  for (size_t section_idx = 0; section_idx < out_var_names.size();
       ++section_idx) {
    auto& ids_in_this_section = splited_ids[section_idx];
Q
Qiao Longfei 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    if (!ids_in_this_section.empty()) {
      auto& prefetch_out_var =
          scope->Var(out_var_names[section_idx])->Get<framework::LoDTensor>();
      const auto* out_var_data = prefetch_out_var.data<float>();
      auto& dims = prefetch_out_var.dims();

      PADDLE_ENFORCE_EQ(dims.size(), 2, "");
      PADDLE_ENFORCE_EQ(ids_in_this_section.size(), dims[0]);

      auto row_numel = dims[1];

      for (size_t i = 0; i < dims[0]; ++i) {
        auto id = ids_in_this_section[i];
        auto origin_id = id + abs_sections[section_idx];
        auto& offsets = id_to_offset[origin_id];
        for (auto& offset : offsets) {
          // should support GPU tensor
          memory::Copy(cpu_place, out_tensor_data + offset * row_numel,
                       cpu_place, out_var_data + i * row_numel,
                       sizeof(float) * row_numel);
        }
Q
Qiao Longfei 已提交
147
      }
Q
Qiao Longfei 已提交
148
    } else {
149
      VLOG(3) << "ids in this section is empty";
Q
Qiao Longfei 已提交
150 151 152 153 154
    }
  }
}

void prefetch(const std::string& id_name, const std::string& out_name,
Q
Qiao Longfei 已提交
155
              const std::vector<std::string>& table_names,
Q
Qiao Longfei 已提交
156
              const std::vector<std::string>& epmap,
Q
Qiao Longfei 已提交
157
              const std::vector<int>& height_sections,
Q
Qiao Longfei 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
              const framework::ExecutionContext& context) {
  auto& local_scope = context.scope().NewScope();

  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto& ctx = *pool.Get(context.GetPlace());

  distributed::RPCClient* rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(
          context.Attr<int>("trainer_id"));

  std::vector<std::string> in_var_names;
  std::vector<std::string> out_var_names;
  for (size_t i = 0; i < epmap.size(); ++i) {
    in_var_names.push_back(id_name + "@" + epmap[i]);
    out_var_names.push_back(out_name + "@" + epmap[i]);
  }

  auto splited_ids = SplitIds(id_name, height_sections, &local_scope);
  SplitIdsIntoMultipleVarsBySection(id_name, in_var_names, height_sections,
                                    splited_ids, &local_scope);

  // create output var in local scope
  for (auto& name : out_var_names) {
    local_scope.Var(name)->GetMutable<framework::LoDTensor>();
  }

  std::vector<distributed::VarHandlePtr> rets;
  for (size_t i = 0; i < in_var_names.size(); i++) {
    if (NeedSend(local_scope, in_var_names[i])) {
187
      VLOG(3) << "sending " << in_var_names[i] << " to " << epmap[i]
Q
Qiao Longfei 已提交
188 189
               << " to get " << out_var_names[i] << " back";
      rets.push_back(rpc_client->AsyncPrefetchVar(
Q
Qiao Longfei 已提交
190
          epmap[i], ctx, local_scope, in_var_names[i], out_var_names[i],
Q
Qiao Longfei 已提交
191
          table_names[i]));
Q
Qiao Longfei 已提交
192
    } else {
193
      VLOG(3) << "don't send no-initialied variable: " << out_var_names[i];
Q
Qiao Longfei 已提交
194 195
    }
  }
Q
Qiao Longfei 已提交
196

Q
Qiao Longfei 已提交
197 198 199 200
  for (size_t i = 0; i < rets.size(); i++) {
    PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
  }

Q
Qiao Longfei 已提交
201 202 203
  MergeMultipleVarsIntoOneBySection(id_name, out_name, out_var_names,
                                    height_sections, splited_ids, context,
                                    &local_scope);
Q
Qiao Longfei 已提交
204 205 206 207 208 209 210

  context.scope().DeleteScope(&local_scope);
}

};  // namespace distributed
};  // namespace operators
};  // namespace paddle