elementwise_op_function.h 103.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16

17
#include <glog/logging.h>
18
#include <algorithm>
19
#include <functional>  // for multiplies
D
dzhwinter 已提交
20
#include <iterator>
21
#include <vector>
Y
Yi Wang 已提交
22 23 24
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
25 26 27
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
#include "paddle/fluid/platform/gpu_info.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/platform/transform.h"
29

C
chengduoZH 已提交
30
#ifdef __NVCC__
31
#include <cuda.h>
C
chengduoZH 已提交
32
#include <thrust/iterator/iterator_adaptor.h>
33
#include "paddle/fluid/platform/cuda_device_function.h"
D
dzhwinter 已提交
34
#include "paddle/fluid/platform/cuda_primitives.h"
Y
Yu Yang 已提交
35
constexpr int ELEMWISE_MAX_BLOCK_DIM = 1024;
36 37
#define BLOCK_X 32
#define BLOCK_Y 32
C
chengduoZH 已提交
38 39
#endif

Y
Yi Wang 已提交
40
#include "paddle/fluid/operators/math/math_function.h"
Y
Yu Yang 已提交
41
#include "paddle/fluid/platform/for_range.h"
42 43 44 45 46 47
#define GetDivMod(dividend, divisor, div, mod) \
  do {                                         \
    const auto dividend_copy = dividend;       \
    *div = dividend_copy / divisor;            \
    *mod = dividend_copy % divisor;            \
  } while (0)
48 49 50 51 52 53 54 55 56 57

namespace paddle {
namespace operators {

/*
 * Out = X ⊙ Y
 * If Y's shape does not match X' shape, they will be reshaped.
 * For example:
 * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
 *    pre=2, n=3*4, post=5
C
chengduo 已提交
58
 *    x.shape(2, 12, 5) * y.shape(1, 12, 1).broadcast(2, 12, 5)
59 60
 * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
 *    pre=2*3, n=4*5, post=1
C
chengduo 已提交
61
 *    x.shape(6, 20, 1) * y.shape(1, 20, 1).broadcast(6, 20, 1)
62
 *
63 64
 * New parameter: *is_run_common_broadcast* is a flag to record whether to run
 * common broadcast code.
65
 */
66 67
inline void get_mid_dims(const framework::DDim &x_dims,
                         const framework::DDim &y_dims, const int axis,
68 69
                         int *pre, int *n, int *post,
                         int *is_run_common_broadcast) {
70 71 72
  *pre = 1;
  *n = 1;
  *post = 1;
73 74 75 76 77 78
  *is_run_common_broadcast = 0;
  for (int i = 0; i < axis; ++i) {
    (*pre) *= x_dims[i];
  }
  for (int i = 0; i < y_dims.size(); ++i) {
    if (x_dims[i + axis] != y_dims[i]) {
79 80 81 82 83 84 85
      PADDLE_ENFORCE_EQ(y_dims[i] == 1 || x_dims[i + axis] == 1, true,
                        platform::errors::InvalidArgument(
                            "Broadcast dimension mismatch. Operands "
                            "could not be broadcast together with the shape of "
                            "X = [%s] and the shape of Y = [%s]. Received [%d] "
                            "in X is not equal to [%d] in Y.",
                            x_dims, y_dims, x_dims[i + axis], y_dims[i]));
86 87
      *is_run_common_broadcast = 1;
      return;
88
    }
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    (*n) *= y_dims[i];
  }
  for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
    (*post) *= x_dims[i];
  }
}
inline int GetElementwiseIndex(const int *x_dims_array, const int max_dim,
                               const int *index_array) {
  int index_ = 0;
  for (int i = 0; i < max_dim; i++) {
    if (x_dims_array[i] > 1) {
      index_ = index_ * x_dims_array[i] + index_array[i];
    }
  }
  return index_;
}

inline void UpdateElementwiseIndexArray(const int *out_dims_array,
                                        const int max_dim, int *index_array) {
  for (int i = max_dim - 1; i >= 0; --i) {
    ++index_array[i];
    if (index_array[i] >= out_dims_array[i]) {
      index_array[i] -= out_dims_array[i];
112
    } else {
113 114 115 116 117 118 119 120 121 122
      break;
    }
  }
}

inline void GetBroadcastDimsArrays(const framework::DDim &x_dims,
                                   const framework::DDim &y_dims,
                                   int *x_dims_array, int *y_dims_array,
                                   int *out_dims_array, const int max_dim,
                                   const int axis) {
123 124 125 126 127 128 129 130 131
  PADDLE_ENFORCE_GE(
      axis, 0,
      platform::errors::InvalidArgument(
          "Axis should be great than or equal to 0, but received axis is %d.",
          axis));
  PADDLE_ENFORCE_LT(axis, max_dim,
                    platform::errors::InvalidArgument(
                        "Axis should be less than %d, but received axis is %d.",
                        max_dim, axis));
132 133 134 135
  if (x_dims.size() > y_dims.size()) {
    std::fill(y_dims_array, y_dims_array + axis, 1);
    if (axis + y_dims.size() < max_dim) {
      std::fill(y_dims_array + axis + y_dims.size(), y_dims_array + max_dim, 1);
136
    }
137 138 139 140 141 142
    std::copy(x_dims.Get(), x_dims.Get() + x_dims.size(), x_dims_array);
    std::copy(y_dims.Get(), y_dims.Get() + y_dims.size(), y_dims_array + axis);
  } else {
    std::fill(x_dims_array, x_dims_array + axis, 1);
    if (axis + x_dims.size() < max_dim) {
      std::fill(x_dims_array + axis + x_dims.size(), x_dims_array + max_dim, 1);
143
    }
144 145 146
    std::copy(x_dims.Get(), x_dims.Get() + x_dims.size(), x_dims_array + axis);
    std::copy(y_dims.Get(), y_dims.Get() + y_dims.size(), y_dims_array);
  }
147

148
  for (int i = 0; i < max_dim; i++) {
149 150 151 152 153 154 155 156 157
    PADDLE_ENFORCE_EQ(
        x_dims_array[i] == y_dims_array[i] || x_dims_array[i] <= 1 ||
            y_dims_array[i] <= 1,
        true, platform::errors::InvalidArgument(
                  "Broadcast dimension mismatch. Operands could "
                  "not be broadcast together with the shape of X = [%s] and "
                  "the shape of Y = [%s]. Received [%d] in X is not equal to "
                  "[%d] in Y at i:%d.",
                  x_dims, y_dims, x_dims_array[i], y_dims_array[i], i));
158 159
    if ((x_dims_array[i] > 1 || y_dims_array[i] > 1) ||
        (x_dims_array[i] == 1 && y_dims_array[i] == 1)) {
160
      out_dims_array[i] = std::max(x_dims_array[i], y_dims_array[i]);
161 162
    } else {
      out_dims_array[i] = -1;
163
    }
164 165
  }
}
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
template <typename Functor, typename T, typename OutType = T>
void CommonForwardBroadcastCPU(const framework::Tensor *x,
                               const framework::Tensor *y, framework::Tensor *z,
                               int *x_dims_array, int *y_dims_array,
                               int *out_dims_array, int max_dim,
                               const platform::CPUDeviceContext &ctx,
                               Functor func,
                               const bool is_xsize_larger = true) {
  std::vector<int> index_array(max_dim, 0);
  const T *x_data = x->data<T>();
  const T *y_data = y->data<T>();
  OutType *out_data = z->mutable_data<OutType>(ctx.GetPlace());

  const int out_size = std::accumulate(out_dims_array, out_dims_array + max_dim,
                                       1, std::multiplies<int>());
  int x_index, y_index;
  for (int out_index = 0; out_index < out_size; ++out_index) {
    x_index = GetElementwiseIndex(x_dims_array, max_dim, index_array.data());
    y_index = GetElementwiseIndex(y_dims_array, max_dim, index_array.data());
    if (is_xsize_larger) {
      out_data[out_index] = func(x_data[x_index], y_data[y_index]);
    } else {
      out_data[out_index] = func(y_data[y_index], x_data[x_index]);
190
    }
191 192

    UpdateElementwiseIndexArray(out_dims_array, max_dim, index_array.data());
193 194 195
  }
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
#ifdef __NVCC__
template <typename Functor, typename T>
__global__ void CommonForwardBroadcastCUDAKernel(
    const int *x_strides_array, const int *y_strides_array,
    const int *out_dims_array, const T *x, const T *y, T *out, int out_size,
    int max_dim, Functor func, const bool is_xsize_larger) {
  for (int out_index = blockIdx.x * blockDim.x + threadIdx.x;
       out_index < out_size; out_index += blockDim.x * gridDim.x) {
    int x_index = 0;
    int y_index = 0;
    int out_index_quotient = out_index;
    int remainder = 0;
#pragma unroll
    for (int i = max_dim - 1; i >= 0; --i) {
      GetDivMod(out_index_quotient, out_dims_array[i], &out_index_quotient,
                &remainder);
      x_index += remainder * x_strides_array[i];
      y_index += remainder * y_strides_array[i];
    }
    if (is_xsize_larger) {
      out[out_index] = func(x[x_index], y[y_index]);
    } else {
      out[out_index] = func(y[y_index], x[x_index]);
    }
  }
}

template <typename Functor, typename T>
void CommonForwardBroadcastCUDA(
    const framework::Tensor *x, const framework::Tensor *y,
    framework::Tensor *z, int *x_dims_array, int *y_dims_array,
    int *out_dims_array, int max_dim, const platform::CUDADeviceContext &ctx,
    Functor func, const bool is_xsize_larger = true) {
229
  const auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
  auto cplace = platform::CPUPlace();
  const T *x_data = x->data<T>();
  const T *y_data = y->data<T>();
  T *out_data = z->mutable_data<T>(ctx.GetPlace());

  std::vector<int> x_strides_array(max_dim);
  std::vector<int> y_strides_array(max_dim);
  int x_stride = 1;
  int y_stride = 1;
  for (int i = max_dim - 1; i >= 0; i--) {
    x_strides_array[i] = x_dims_array[i] == 1 ? 0 : x_stride;
    y_strides_array[i] = y_dims_array[i] == 1 ? 0 : y_stride;
    x_stride *= x_dims_array[i];
    y_stride *= y_dims_array[i];
  }

  int bytes = max_dim * sizeof(int);
  auto x_strides_array_tmp = memory::Alloc(ctx, bytes);
  int *x_strides_array_gpu =
      reinterpret_cast<int *>(x_strides_array_tmp->ptr());
  memory::Copy(gplace, x_strides_array_gpu, cplace, x_strides_array.data(),
               bytes, ctx.stream());

  auto y_strides_array_tmp = memory::Alloc(ctx, bytes);
  int *y_strides_array_gpu =
      reinterpret_cast<int *>(y_strides_array_tmp->ptr());
  memory::Copy(gplace, y_strides_array_gpu, cplace, y_strides_array.data(),
               bytes, ctx.stream());

  auto out_dims_array_tmp = memory::Alloc(ctx, bytes);
  int *out_dims_array_gpu = reinterpret_cast<int *>(out_dims_array_tmp->ptr());
  memory::Copy(gplace, out_dims_array_gpu, cplace, out_dims_array, bytes,
               ctx.stream());

  const int out_size = std::accumulate(out_dims_array, out_dims_array + max_dim,
                                       1, std::multiplies<int>());
  dim3 gird_size = dim3(
      (out_size + PADDLE_CUDA_THREAD_SIZE - 1) / PADDLE_CUDA_THREAD_SIZE, 1);
  dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);

  CommonForwardBroadcastCUDAKernel<
      Functor, T><<<gird_size, block_size, 0, ctx.stream()>>>(
      x_strides_array_gpu, y_strides_array_gpu, out_dims_array_gpu, x_data,
      y_data, out_data, out_size, max_dim, func, is_xsize_larger);
}

#endif  // __NVCC__

template <typename T, typename DX_OP, typename DY_OP>
void CommonGradBroadcastCPU(
    const framework::Tensor &x, const framework::Tensor &y,
    const framework::Tensor &out, const framework::Tensor &dout,
    framework::Tensor *dx, framework::Tensor *dy, int *x_dims_array,
    int *y_dims_array, int *out_dims_array, int max_dim,
    const platform::CPUDeviceContext &ctx, DX_OP dx_op, DY_OP dy_op) {
  std::vector<int> index_array(max_dim, 0);
  const T *x_data = x.data<T>();
  const T *y_data = y.data<T>();
  const T *out_data = out.data<T>();
  const T *dout_data = dout.data<T>();
  T *dx_data = dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace());
  T *dy_data = dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace());
  if (dx_data != nullptr) {
    memset(dx_data, 0, dx->numel() * sizeof(T));
  }
  if (dy_data != nullptr) {
    memset(dy_data, 0, dy->numel() * sizeof(T));
  }
  const int out_size = std::accumulate(out_dims_array, out_dims_array + max_dim,
                                       1, std::multiplies<int>());
  int x_index, y_index;
  for (int out_index = 0; out_index < out_size; ++out_index) {
    x_index = GetElementwiseIndex(x_dims_array, max_dim, index_array.data());
    y_index = GetElementwiseIndex(y_dims_array, max_dim, index_array.data());
    if (dx_data != nullptr) {
      dx_data[x_index] += dx_op(x_data[x_index], y_data[y_index],
                                out_data[out_index], dout_data[out_index]);
    }
    if (dy_data != nullptr) {
      dy_data[y_index] += dy_op(x_data[x_index], y_data[y_index],
                                out_data[out_index], dout_data[out_index]);
    }

    UpdateElementwiseIndexArray(out_dims_array, max_dim, index_array.data());
  }
}

inline void ComputeBroadcastKernelSize(int *x_dims_array, int *out_dims_array,
                                       int *x_blocks, int *x_threads,
                                       int max_dim) {
  *x_blocks = 1;
  *x_threads = 1;
  for (int i = 0; i < max_dim; i++) {
    if (x_dims_array[i] == out_dims_array[i]) {
      *x_blocks *= x_dims_array[i];
    } else {
      *x_threads *= out_dims_array[i];
    }
  }
}

inline void ComputeBroadcastTranspositionArray(const int *x_one_indexs,
                                               int *x_trans_indexs,
                                               const int max_dim,
                                               const int x_one_size) {
  int diff = max_dim - x_one_size;
  std::copy_n(x_one_indexs, x_one_size, x_trans_indexs + diff);
  int p = 0;
  int q = diff;
  for (int i = 0; i < max_dim; ++i) {
    if (q < max_dim && i == x_trans_indexs[q]) {
      ++q;
    } else {
      x_trans_indexs[p++] = i;
    }
  }
}

#ifdef __NVCC__
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
template <typename T, typename DX_OP, typename DY_OP>
static __global__ void ElemwiseGradBroadcast1CUDAKernel(
    const T *x, const T *y, const T *out, const T *dout, int h, int w,
    bool is_xsize_larger, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
  int j = blockIdx.x;
  int i = threadIdx.x;
  int tid = threadIdx.x;
  T val(0);
  if (is_xsize_larger) {
    do {
      int x_offset = i * w + j;
      if (dx) {
        dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }
      if (dy) {
        val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }
      i += ELEMWISE_MAX_BLOCK_DIM;
    } while (i < h);

    if (dy) {
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {  // x.dims < y.dims, broadcast for x.
    do {
      int y_offset = i * w + j;
      if (dy) {
        dy[y_offset] = dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
      }
      if (dx) {
        val += dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
      }
      i += ELEMWISE_MAX_BLOCK_DIM;
    } while (i < h);

    if (dx) {
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
    }
  }
}

// suppose use 2D block is fast because more parallel
// and memory coalesced
template <typename T, typename DX_OP, typename DY_OP>
static __global__ void FastElemwiseGradBroadcast1CUDAKernel(
    const T *x, const T *y, const T *out, const T *dout, int h, int w,
    bool is_xsize_larger, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
  __shared__ T sdata[BLOCK_Y][BLOCK_X + 1];

  T val(0);
  size_t width_stride = gridDim.x * blockDim.x;
  size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
  size_t full_width =
      (w & (~((uint64_t)(BLOCK_X - 1)))) + ((w & (BLOCK_X - 1)) ? BLOCK_X : 0);
  size_t full_height =
      (h & (~((uint64_t)(BLOCK_Y - 1)))) + ((h & (BLOCK_Y - 1)) ? BLOCK_Y : 0);
  if (is_xsize_larger) {
    for (int m = idx; m < full_width; m += width_stride) {
      sdata[threadIdx.y][threadIdx.x] = 0;
      for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
        int x_offset = n * w + m;
        if (dx && m < w && n < h) {
          dx[x_offset] =
              dx_op(x[x_offset], y[m], out[x_offset], dout[x_offset]);
        }
        if (dy) {
          if (m < w && n < h) {
            T val = dy_op(x[x_offset], y[m], out[x_offset], dout[x_offset]);
            sdata[threadIdx.y][threadIdx.x] += val;
          }
          __syncthreads();
        }
      }
      if (dy) {
        T my_val = sdata[threadIdx.x][threadIdx.y];
        for (int i = warpSize >> 1; i > 0; i >>= 1)
          my_val += platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
        __syncthreads();
        if ((threadIdx.x == 0)) {
          sdata[0][threadIdx.y] = my_val;
        }
        __syncthreads();
        if (threadIdx.y == 0 && m < w) {
          dy[m] = sdata[0][threadIdx.x];
        }
      }
    }
  } else {  // x.dims < y.dims, broadcast for x.
    for (int m = idx; m < full_width; m += width_stride) {
      sdata[threadIdx.y][threadIdx.x] = 0;
      for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
        int y_offset = n * w + m;
        if (dy && m < w && n < h) {
          dy[y_offset] =
              dy_op(x[m], y[y_offset], out[y_offset], dout[y_offset]);
        }
        if (dx) {
          if (m < w && n < h) {
            T val = dx_op(x[m], y[y_offset], out[y_offset], dout[y_offset]);
            sdata[threadIdx.y][threadIdx.x] += val;
          }
          __syncthreads();
        }
      }
      if (dx) {
        T my_val = sdata[threadIdx.x][threadIdx.y];
        for (int i = warpSize >> 1; i > 0; i >>= 1)
          my_val += platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
        __syncthreads();
        if ((threadIdx.x == 0)) {
          sdata[0][threadIdx.y] = my_val;
        }
        __syncthreads();
        if (threadIdx.y == 0 && m < w) {
          dx[m] = sdata[0][threadIdx.x];
        }
      }
    }
  }
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
template <typename T, typename DX_OP>
__global__ void CommonGradBroadcastCUDAKernel(
    const int *x_strides_array, const int *y_strides_array,
    const int *out_dims_array, const int *y_strides_order,
    const int *y_dims_order, const T *x, const T *y, const T *out,
    const T *dout, T *dx, int out_size, int max_dim, int thread_num,
    DX_OP dx_op) {
  T val(0);
  int i = blockIdx.x;
  int tid = threadIdx.x;
  for (int j = tid; j < thread_num; j += blockDim.x) {
    const int X_index = i * thread_num + j;
    int out_index = X_index;
    int C_index = 0;
    int B_index = i * thread_num + j;
    int remainder = 0;
#pragma unroll
    for (int d = max_dim - 1; d >= 0; --d) {
      GetDivMod(B_index, y_dims_order[d], &B_index, &remainder);
      C_index += remainder * y_strides_order[d];
    }
    int x_index = 0;
    int y_index = 0;
    int C_index_val = C_index;
#pragma unroll
    for (int d = max_dim - 1; d >= 0; --d) {
      GetDivMod(C_index_val, out_dims_array[d], &C_index_val, &remainder);
      x_index += remainder * x_strides_array[d];
      y_index += remainder * y_strides_array[d];
    }
    out_index = C_index;
    val += dx_op(x[x_index], y[y_index], out[out_index], dout[out_index]);
  }
  val = paddle::platform::reduceSum(val, tid, thread_num);
  if (threadIdx.x == 0) {
    dx[i] = val;
  }
}

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
template <typename T, typename DY_OP>
static __global__ void CommonGradBroadcast1CUDAKernelHeight(
    const T *x, const T *y, const T *out, const T *dout, int h, int w,
    DY_OP dy_op, T *dy, int x_h, int x_w, bool is_y) {
  int j = blockIdx.x;
  int i = threadIdx.x;
  int tid = threadIdx.x;
  T val(0);

  if (is_y) {
    do {
      int out_offset = i * w + j;
      int x_offset = (i % x_h) * x_w + j % x_w;
      if (dy) {
        val += dy_op(x[x_offset], y[j], out[out_offset], dout[out_offset]);
      }
      i += ELEMWISE_MAX_BLOCK_DIM;
    } while (i < h);

    if (dy) {
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {
    do {
      int out_offset = i * w + j;
      int y_offset = (i % x_h) * x_w + j % x_w;
      if (dy) {
        val += dy_op(x[j], y[y_offset], out[out_offset], dout[out_offset]);
      }
      i += ELEMWISE_MAX_BLOCK_DIM;
    } while (i < h);

    if (dy) {
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  }
}

template <typename T, typename DY_OP>
static __global__ void FastCommonGradBroadcastCUDAKernelHeight(
    const T *x, const T *y, const T *out, const T *dout, int h, int w,
    DY_OP dy_op, T *dy, int x_h, int x_w, bool is_y) {
  __shared__ T sdata[BLOCK_Y][BLOCK_X + 1];

  T val(0);
  size_t width_stride = gridDim.x * blockDim.x;
  size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
  size_t full_width =
      (w & (~((uint64_t)(BLOCK_X - 1)))) + ((w & (BLOCK_X - 1)) ? BLOCK_X : 0);
  size_t full_height =
      (h & (~((uint64_t)(BLOCK_Y - 1)))) + ((h & (BLOCK_Y - 1)) ? BLOCK_Y : 0);
  if (is_y) {
    for (int m = idx; m < full_width; m += width_stride) {
      sdata[threadIdx.y][threadIdx.x] = 0;
      for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
        int out_offset = n * w + m;
        int x_offset = (n % x_h) * x_w + m % x_w;
        if (dy) {
          if (m < w && n < h) {
            T val = dy_op(x[x_offset], y[m], out[out_offset], dout[out_offset]);
            sdata[threadIdx.y][threadIdx.x] += val;
          }
          __syncthreads();
        }
      }
      if (dy) {
        T my_val = sdata[threadIdx.x][threadIdx.y];
        for (int i = warpSize >> 1; i > 0; i >>= 1) {
          my_val += platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
        }
        __syncthreads();
        if ((threadIdx.x == 0)) {
          sdata[0][threadIdx.y] = my_val;
        }
        __syncthreads();
        if (threadIdx.y == 0 && m < w) {
          dy[m] = sdata[0][threadIdx.x];
        }
      }
    }
  } else {
    for (int m = idx; m < full_width; m += width_stride) {
      sdata[threadIdx.y][threadIdx.x] = 0;
      for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
        int out_offset = n * w + m;
        int y_offset = (n % x_h) * x_w + m % x_w;
        if (dy) {
          if (m < w && n < h) {
            T val = dy_op(x[m], y[y_offset], out[out_offset], dout[out_offset]);
            sdata[threadIdx.y][threadIdx.x] += val;
          }
          __syncthreads();
        }
      }
      if (dy) {
        T my_val = sdata[threadIdx.x][threadIdx.y];
        for (int i = warpSize >> 1; i > 0; i >>= 1) {
          my_val += platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
        }
        __syncthreads();
        if ((threadIdx.x == 0)) {
          sdata[0][threadIdx.y] = my_val;
        }
        __syncthreads();
        if (threadIdx.y == 0 && m < w) {
          dy[m] = sdata[0][threadIdx.x];
        }
      }
    }
  }
}

template <typename T, typename DY_OP, typename DX_OP>
static __global__ void FastCommonGradBroadcastAllCUDAKernel(
    const T *x, const T *y, const T *out, const T *dout, int pre, int n,
    int post, bool is_xsize_larger, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
  int tid = threadIdx.x;
  int bid = blockIdx.x;

  T val(0);
  if (is_xsize_larger) {
    for (int i = tid; i < n; i += ELEMWISE_MAX_BLOCK_DIM) {
      int b_i = bid / post;
      int b_j = bid % post;
      int x_offset = b_i * n * post + i * post + b_j;
      int y_offset = b_i * post + b_j;
      if (dx) {
        dx[x_offset] =
            dx_op(x[x_offset], y[y_offset], out[x_offset], dout[x_offset]);
      }
      if (dy) {
        val += dy_op(x[x_offset], y[y_offset], out[x_offset], dout[x_offset]);
      }
    }
    if (dy) {
      int h = n > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : n;
      val = paddle::platform::reduceSum(val, tid, h);
      if (tid == 0) {
        dy[bid] = val;
      }
    }
  } else {
    for (int i = tid; i < n; i += ELEMWISE_MAX_BLOCK_DIM) {
      int b_i = bid / post;
      int b_j = bid % post;
      int y_offset = b_i * n * post + i * post + b_j;
      int x_offset = b_i * post + b_j;
      if (dy) {
        dy[y_offset] =
            dy_op(x[x_offset], y[y_offset], out[x_offset], dout[x_offset]);
      }
      if (dx) {
        val += dx_op(x[x_offset], y[y_offset], out[x_offset], dout[x_offset]);
      }
    }
    if (dx) {
      int h = n > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : n;
      val = paddle::platform::reduceSum(val, tid, h);
      if (tid == 0) {
        dx[bid] = val;
      }
    }
  }
}

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
template <typename T, typename OP>
static __global__ void FastCommonGradBroadcastOneCUDAKernel(
    const T *x, const T *y, const T *out, const T *dout, int pre, int n,
    int post, int y_pre, int y_n, int y_post, bool is_xsize, OP op, T *dd) {
  int tid = threadIdx.x;
  int bid = blockIdx.x;

  T val(0);
  if (is_xsize) {
    // do reduce for x
    for (int i = tid; i < n; i += ELEMWISE_MAX_BLOCK_DIM) {
      int b_i = bid / post;
      int b_j = bid % post;
      int x_offset = b_i * n * post + b_j;
      int out_offset = b_i * n * post + i * post + b_j;

      // Get y pre rows id with x post and y_pre.
      int b_yi = bid / (post * y_pre);
      int b_yj = bid % y_post;
      int y_offset = b_yi * y_n + i * y_post + b_yj;

      if (dd) {
        val += op(x[x_offset], y[y_offset], out[out_offset], dout[out_offset]);
      }
    }
    if (dd) {
      int h = n > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : n;
      val = paddle::platform::reduceSum(val, tid, h);
      if (tid == 0) {
        dd[bid] = val;
      }
    }
  } else {
    // do reduce for y
    for (int i = tid; i < n; i += ELEMWISE_MAX_BLOCK_DIM) {
      int b_i = bid / post;
      int b_j = bid % post;
      int y_offset = b_i * n * post + b_j;
      int out_offset = b_i * n * post + i * post + b_j;

      int b_yi = bid / (post * y_pre);
      int b_yj = bid % y_post;
      int x_offset = b_yi * y_n + i * y_post + b_yj;

      if (dd) {
        val += op(x[x_offset], y[y_offset], out[out_offset], dout[out_offset]);
      }
    }
    if (dd) {
      int h = n > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : n;
      val = paddle::platform::reduceSum(val, tid, h);
      if (tid == 0) {
        dd[bid] = val;
      }
    }
  }
}

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
// Check input can be split into 2 parts
static inline bool SplitDims(const std::vector<int> &y_broadcast_pos,
                             int max_dim) {
  bool can_split_dim2 = true;
  // must at start or end.
  if (y_broadcast_pos[0] != 0 &&
      y_broadcast_pos[y_broadcast_pos.size() - 1] != max_dim - 1) {
    can_split_dim2 = false;
  } else {
    for (int i = 1; i < y_broadcast_pos.size(); ++i) {
      // dim must be continue
      if (y_broadcast_pos[i] != y_broadcast_pos[i - 1] + 1) {
        can_split_dim2 = false;
        break;
      }
    }
  }
  return can_split_dim2;
}

768 769 770 771 772 773 774 775 776 777
// Suppose only has contiguous dims
static inline bool CheckContiguousDims(const std::vector<int> &broadcast_pos) {
  for (int i = 1; i < broadcast_pos.size(); ++i) {
    if (broadcast_pos[i] != broadcast_pos[i - 1] + 1) {
      return false;
    }
  }
  return true;
}

778 779 780 781 782 783 784
template <typename T, typename DX_OP, typename DY_OP>
void CommonGradBroadcastCUDA(
    const framework::Tensor &x, const framework::Tensor &y,
    const framework::Tensor &out, const framework::Tensor &dout,
    framework::Tensor *dx, framework::Tensor *dy, int *x_dims_array,
    int *y_dims_array, int *out_dims_array, int max_dim,
    const platform::CUDADeviceContext &ctx, DX_OP dx_op, DY_OP dy_op) {
785
  const auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
  auto cplace = platform::CPUPlace();
  const T *x_data = x.data<T>();
  const T *y_data = y.data<T>();
  const T *out_data = out.data<T>();
  const T *dout_data = dout.data<T>();
  T *dx_data = dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace());
  T *dy_data = dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace());

  std::vector<int> x_one_indexs;
  std::vector<int> y_one_indexs;
  for (int i = 0; i < max_dim; i++) {
    if (x_dims_array[i] != y_dims_array[i]) {
      if (x_dims_array[i] == 1) {
        x_one_indexs.push_back(i);
      }
      if (y_dims_array[i] == 1) {
        y_one_indexs.push_back(i);
      }
    }
  }

  std::vector<int> x_trans_indexs(max_dim);
  std::vector<int> y_trans_indexs(max_dim);
  ComputeBroadcastTranspositionArray(x_one_indexs.data(), x_trans_indexs.data(),
                                     max_dim, x_one_indexs.size());
  ComputeBroadcastTranspositionArray(y_one_indexs.data(), y_trans_indexs.data(),
                                     max_dim, y_one_indexs.size());

  // compute array stride for cuda kernel;
  // e.g. x.dims=[2,3,4], x_stride=[12,4,1]
  std::vector<int> x_strides_array(max_dim);
  std::vector<int> y_strides_array(max_dim);
  std::vector<int> out_strides_array(max_dim);
  int x_stride = 1;
  int y_stride = 1;
  int z_stride = 1;
  for (int i = max_dim - 1; i >= 0; i--) {
    x_strides_array[i] = x_dims_array[i] == 1 ? 0 : x_stride;
    y_strides_array[i] = y_dims_array[i] == 1 ? 0 : y_stride;
    out_strides_array[i] = z_stride;
    x_stride *= x_dims_array[i];
    y_stride *= y_dims_array[i];
    z_stride *= out_dims_array[i];
  }

  std::vector<int> x_strides_order(max_dim);
  std::vector<int> y_strides_order(max_dim);
  std::vector<int> x_dims_order(max_dim);
  std::vector<int> y_dims_order(max_dim);
  for (int i = 0; i < max_dim; ++i) {
    x_strides_order[i] = out_strides_array[x_trans_indexs[i]];
    y_strides_order[i] = out_strides_array[y_trans_indexs[i]];
    x_dims_order[i] = out_dims_array[x_trans_indexs[i]];
    y_dims_order[i] = out_dims_array[y_trans_indexs[i]];
  }
841 842 843 844 845 846 847 848 849 850 851 852 853
  std::vector<int> x_broadcast_pos;
  std::vector<int> y_broadcast_pos;

  int bytes = max_dim * sizeof(int);

  for (int i = 0; i < max_dim; ++i) {
    if (x_dims_array[i] != out_dims_array[i] && x_dims_array[i] == 1) {
      x_broadcast_pos.emplace_back(i);
    }
    if (y_dims_array[i] != out_dims_array[i] && y_dims_array[i] == 1) {
      y_broadcast_pos.emplace_back(i);
    }
  }
854

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
  auto stream = ctx.stream();
  bool can_split_x = false;
  bool can_split_y = false;

  auto FastCommonCUDAF = [&](const std::vector<int> &broadcast_pos, bool is_y) {
    int h =
        std::accumulate(out_dims_array, out_dims_array + broadcast_pos.size(),
                        1, std::multiplies<int>());
    int w =
        std::accumulate(out_dims_array + broadcast_pos.size(),
                        out_dims_array + max_dim, 1, std::multiplies<int>());

    VLOG(3) << "FastCommonCUDAF elementwise w:" << w << " h:" << h
            << " is_y:" << is_y;

    int split_h;
    int split_w;
    int kh = h;
    int kw = w;

    if (is_y) {
      split_h =
          std::accumulate(x_dims_array, x_dims_array + broadcast_pos.size(), 1,
                          std::multiplies<int>());
      split_w =
          std::accumulate(x_dims_array + broadcast_pos.size(),
                          x_dims_array + max_dim, 1, std::multiplies<int>());

    } else {
      split_h =
          std::accumulate(y_dims_array, y_dims_array + broadcast_pos.size(), 1,
                          std::multiplies<int>());
      split_w =
          std::accumulate(y_dims_array + broadcast_pos.size(),
                          y_dims_array + max_dim, 1, std::multiplies<int>());
    }

    if (h > split_h) kh = split_h;
    if (w > split_w) kw = split_w;

    if (is_y) {
      if (w < 16 || h < 16) {
        int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
        int grid_size = w;
        CommonGradBroadcast1CUDAKernelHeight<<<grid_size, block_size, 0,
                                               stream>>>(
            x_data, y_data, out_data, dout_data, h, w, dy_op, dy_data, kh, kw,
            is_y);
      } else {
        dim3 block_size = dim3(BLOCK_X, BLOCK_Y);
        int grid_size = (w + BLOCK_X - 1) / BLOCK_X;
        FastCommonGradBroadcastCUDAKernelHeight<<<grid_size, block_size, 0,
                                                  stream>>>(
            x_data, y_data, out_data, dout_data, h, w, dy_op, dy_data, kh, kw,
            is_y);
      }
    } else {
      if (w < 16 || h < 16) {
        int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
        int grid_size = w;
        CommonGradBroadcast1CUDAKernelHeight<<<grid_size, block_size, 0,
                                               stream>>>(
            x_data, y_data, out_data, dout_data, h, w, dx_op, dx_data, kh, kw,
            is_y);
      } else {
        dim3 block_size = dim3(BLOCK_X, BLOCK_Y);
        int grid_size = (w + BLOCK_X - 1) / BLOCK_X;
        FastCommonGradBroadcastCUDAKernelHeight<<<grid_size, block_size, 0,
                                                  stream>>>(
            x_data, y_data, out_data, dout_data, h, w, dx_op, dx_data, kh, kw,
            is_y);
      }
    }
  };

  auto FastBroadCastHeightCUDAF = [&](const std::vector<int> &broadcast_pos,
                                      bool x_large) {
    int h =
        std::accumulate(out_dims_array, out_dims_array + broadcast_pos.size(),
                        1, std::multiplies<int>());
    int w =
        std::accumulate(out_dims_array + broadcast_pos.size(),
                        out_dims_array + max_dim, 1, std::multiplies<int>());

    VLOG(3) << "FastBroadCastHeightCUDAF w:" << w << " h:" << h;

    if (w < 16 || h < 16) {
      int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
      int grid_size = w;
      ElemwiseGradBroadcast1CUDAKernel<<<grid_size, block_size, 0, stream>>>(
          x_data, y_data, out_data, dout_data, h, w, x_large, dx_op, dy_op,
          dx_data, dy_data);
    } else {
      dim3 block_size = dim3(BLOCK_X, BLOCK_Y);
      int grid_size = (w + BLOCK_X - 1) / BLOCK_X;
      FastElemwiseGradBroadcast1CUDAKernel<<<grid_size, block_size, 0,
                                             stream>>>(
          x_data, y_data, out_data, dout_data, h, w, x_large, dx_op, dy_op,
          dx_data, dy_data);
    }
  };

  auto FastBroadCastAllCUDAF = [&](const std::vector<int> &broadcast_pos,
                                   int max_dim, bool is_x_large) {
    int axis = broadcast_pos[0];
    int pre = std::accumulate(out_dims_array, out_dims_array + axis, 1,
                              std::multiplies<int>());
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
    int mid = 1;
    int post = 1;

    if (broadcast_pos.size() == 1) {
      mid = out_dims_array[axis];
      post =
          std::accumulate(out_dims_array + axis + 1, out_dims_array + max_dim,
                          1, std::multiplies<int>());
    } else {
      mid = std::accumulate(out_dims_array + axis,
                            out_dims_array + broadcast_pos.back() + 1, 1,
                            std::multiplies<int>());
      post =
          std::accumulate(out_dims_array + broadcast_pos.back() + 1,
                          out_dims_array + max_dim, 1, std::multiplies<int>());
    }
978 979 980 981 982 983 984 985 986 987 988 989

    VLOG(3) << "FastBroadCastAllCUDAF pre:" << pre << " mid:" << mid
            << " post:" << post;

    int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, mid);
    int grid_size = pre * post;

    FastCommonGradBroadcastAllCUDAKernel<<<grid_size, block_size, 0, stream>>>(
        x_data, y_data, out_data, dout_data, pre, mid, post, is_x_large, dx_op,
        dy_op, dx_data, dy_data);
  };

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
  auto FastBroadCastOneCUDAF = [&](const std::vector<int> &broadcast_pos,
                                   int max_dim, bool is_x) {
    int axis = broadcast_pos[0];
    int pre = std::accumulate(out_dims_array, out_dims_array + axis, 1,
                              std::multiplies<int>());
    int mid = out_dims_array[axis];
    int post =
        std::accumulate(out_dims_array + axis + 1, out_dims_array + max_dim, 1,
                        std::multiplies<int>());

    int k_pre;
    int k_mid;
    int k_post;

    if (is_x) {
      k_pre = std::accumulate(y_dims_array, y_dims_array + axis, 1,
                              std::multiplies<int>());
      k_mid = y_dims_array[axis];
      k_post = std::accumulate(y_dims_array + axis + 1, y_dims_array + max_dim,
                               1, std::multiplies<int>());
      int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, mid);
      int grid_size = pre * post;
      // we need to calc y offset with blockid, so do x_pre/y_pre to get left
      // size.
      if (k_pre != pre) k_pre = pre / k_pre;

      FastCommonGradBroadcastOneCUDAKernel<<<grid_size, block_size, 0,
                                             stream>>>(
          x_data, y_data, out_data, dout_data, pre, mid, post, k_pre, k_mid,
          k_post, true, dx_op, dx_data);
    } else {
      k_pre = std::accumulate(x_dims_array, x_dims_array + axis, 1,
                              std::multiplies<int>());
      k_mid = x_dims_array[axis];
      k_post = std::accumulate(x_dims_array + axis + 1, x_dims_array + max_dim,
                               1, std::multiplies<int>());
      int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, mid);
      int grid_size = pre * post;
      if (k_pre != pre) k_pre = pre / k_pre;

      FastCommonGradBroadcastOneCUDAKernel<<<grid_size, block_size, 0,
                                             stream>>>(
          x_data, y_data, out_data, dout_data, pre, mid, post, k_pre, k_mid,
          k_post, false, dy_op, dy_data);
    }
    VLOG(3) << "FastBroadCastOneCUDAF pre:" << pre << " mid:" << mid
            << " post:" << post;
  };

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
  // do fast elementwise if: 1. only one input need to do broadcast, we can
  // fallback
  // to old fast path.
  // 2. if both x and y need broadcast, then do it one by one.
  if (x_broadcast_pos.empty() && !y_broadcast_pos.empty()) {
    can_split_y = SplitDims(y_broadcast_pos, max_dim);
    if (can_split_y) {
      // only y need to do broadcast on h
      if (y_broadcast_pos[0] == 0) {
        FastBroadCastHeightCUDAF(y_broadcast_pos, true);
      } else {
        LOG(ERROR) << "Error, broadcast should not into w broadcast";
      }
      return;
1053 1054 1055
    } else if (y_broadcast_pos.size() == 1 ||
               CheckContiguousDims(y_broadcast_pos)) {  // for only one dim and
                                                        // contiguous broadcast.
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
      // If cannot split,  which means input has 3 parts
      FastBroadCastAllCUDAF(y_broadcast_pos, max_dim, true);
      return;
    }
  } else if (y_broadcast_pos.empty() && !x_broadcast_pos.empty()) {
    // only x need broadcast
    can_split_x = SplitDims(x_broadcast_pos, max_dim);
    if (can_split_x) {
      if (x_broadcast_pos[0] == 0) {
        FastBroadCastHeightCUDAF(x_broadcast_pos, false);
      } else {
        // x need to do broadcast on w
        LOG(ERROR) << "Error, broadcast should not into w broadcast";
      }
      return;
1071 1072
    } else if (x_broadcast_pos.size() == 1 ||
               CheckContiguousDims(x_broadcast_pos)) {
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
      FastBroadCastAllCUDAF(x_broadcast_pos, max_dim, false);
      return;
    }
  } else if (!x_broadcast_pos.empty() && !y_broadcast_pos.empty()) {
    // do x and y broadcast each.
    can_split_y = SplitDims(y_broadcast_pos, max_dim);
    if (can_split_y) {
      // begin at start.
      if (y_broadcast_pos[0] == 0) {
        FastCommonCUDAF(y_broadcast_pos, true);
      } else {
        // finish at end
        LOG(ERROR) << "Error, broadcast should not into w broadcast";
      }
1087 1088 1089
    } else if (y_broadcast_pos.size() == 1) {
      FastBroadCastOneCUDAF(y_broadcast_pos, max_dim, false);
      can_split_y = true;
1090 1091 1092 1093 1094 1095 1096 1097
    }
    can_split_x = SplitDims(x_broadcast_pos, max_dim);
    if (can_split_x) {
      if (x_broadcast_pos[0] == 0) {
        FastCommonCUDAF(x_broadcast_pos, false);
      } else {
        LOG(ERROR) << "Error, broadcast should not into w broadcast";
      }
1098 1099 1100
    } else if (x_broadcast_pos.size() == 1) {
      FastBroadCastOneCUDAF(x_broadcast_pos, max_dim, true);
      can_split_x = true;
1101 1102 1103 1104 1105 1106
    }
    VLOG(3) << "CommonBroadcast can_split_y:" << can_split_y
            << " can_split_x:" << can_split_x;
    // if both x and y into fast path then return
    if (can_split_y && can_split_x) return;
  }
1107

1108
  // Should remove memory copy, use reg instead.
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
  int x_blocks = 0;
  int x_threads = 0;
  ComputeBroadcastKernelSize(x_dims_array, out_dims_array, &x_blocks,
                             &x_threads, max_dim);
  int y_blocks = 0;
  int y_threads = 0;
  ComputeBroadcastKernelSize(y_dims_array, out_dims_array, &y_blocks,
                             &y_threads, max_dim);

  auto x_strides_array_tmp = memory::Alloc(ctx, bytes);
  int *x_strides_array_gpu =
      reinterpret_cast<int *>(x_strides_array_tmp->ptr());
  memory::Copy(gplace, x_strides_array_gpu, cplace, x_strides_array.data(),
               bytes, ctx.stream());

  auto y_strides_array_tmp = memory::Alloc(ctx, bytes);
  int *y_strides_array_gpu =
      reinterpret_cast<int *>(y_strides_array_tmp->ptr());
  memory::Copy(gplace, y_strides_array_gpu, cplace, y_strides_array.data(),
               bytes, ctx.stream());

  auto out_dims_array_tmp = memory::Alloc(ctx, bytes);
  int *out_dims_array_gpu = reinterpret_cast<int *>(out_dims_array_tmp->ptr());
  memory::Copy(gplace, out_dims_array_gpu, cplace, out_dims_array, bytes,
               ctx.stream());

  const int out_size = std::accumulate(out_dims_array, out_dims_array + max_dim,
                                       1, std::multiplies<int>());
  int x_block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, x_threads);
  int y_block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, y_threads);
1139
  if (dx && !can_split_x) {
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
    auto x_strides_order_tmp = memory::Alloc(ctx, bytes);
    int *x_strides_order_gpu =
        reinterpret_cast<int *>(x_strides_order_tmp->ptr());
    memory::Copy(gplace, x_strides_order_gpu, cplace, x_strides_order.data(),
                 bytes, ctx.stream());

    auto x_dims_order_tmp = memory::Alloc(ctx, bytes);
    int *x_dims_order_gpu = reinterpret_cast<int *>(x_dims_order_tmp->ptr());
    memory::Copy(gplace, x_dims_order_gpu, cplace, x_dims_order.data(), bytes,
                 ctx.stream());
    CommonGradBroadcastCUDAKernel<
        T, DX_OP><<<x_blocks, x_block_size, 0, ctx.stream()>>>(
        x_strides_array_gpu, y_strides_array_gpu, out_dims_array_gpu,
        x_strides_order_gpu, x_dims_order_gpu, x_data, y_data, out_data,
        dout_data, dx_data, out_size, max_dim, x_threads, dx_op);
  }
1156
  if (dy && !can_split_y) {
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
    auto y_strides_order_tmp = memory::Alloc(ctx, bytes);
    int *y_strides_order_gpu =
        reinterpret_cast<int *>(y_strides_order_tmp->ptr());
    memory::Copy(gplace, y_strides_order_gpu, cplace, y_strides_order.data(),
                 bytes, ctx.stream());

    auto y_dims_order_tmp = memory::Alloc(ctx, bytes);
    int *y_dims_order_gpu = reinterpret_cast<int *>(y_dims_order_tmp->ptr());
    memory::Copy(gplace, y_dims_order_gpu, cplace, y_dims_order.data(), bytes,
                 ctx.stream());
    CommonGradBroadcastCUDAKernel<
        T, DY_OP><<<y_blocks, y_block_size, 0, ctx.stream()>>>(
        x_strides_array_gpu, y_strides_array_gpu, out_dims_array_gpu,
        y_strides_order_gpu, y_dims_order_gpu, x_data, y_data, out_data,
        dout_data, dy_data, out_size, max_dim, y_threads, dy_op);
  }
}

#endif  // __NVCC__

1177
inline framework::DDim trim_trailing_singular_dims(
1178
    const framework::DDim &dims) {
1179
  // Remove trailing dimensions of size 1 for y
1180
  auto actual_dims_size = dims.size();
1181
  for (; actual_dims_size != 0; --actual_dims_size) {
1182
    if (dims[actual_dims_size - 1] != 1) break;
1183
  }
1184
  if (actual_dims_size == dims.size()) return dims;
1185 1186 1187 1188
  std::vector<int> trim_dims;
  trim_dims.resize(actual_dims_size);
  for (int i = 0; i < actual_dims_size; ++i) {
    trim_dims[i] = dims[i];
1189
  }
1190 1191 1192
  if (trim_dims.size() == 0) {
    return framework::DDim(framework::make_dim());
  }
1193 1194
  framework::DDim actual_dims = framework::make_ddim(trim_dims);
  return actual_dims;
1195 1196
}

Q
QI JUN 已提交
1197
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
1198
class RowwiseTransformIterator;
1199

Q
QI JUN 已提交
1200
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
1201
class MidWiseTransformIterator;
C
chengduoZH 已提交
1202

D
dzhwinter 已提交
1203
// NOTE(dzhwinter): ptrdiff_t in iterator is deperecated in c++17
C
chengduoZH 已提交
1204
template <typename T>
D
dzhwinter 已提交
1205 1206 1207
class RowwiseTransformIterator<T, platform::CPUDeviceContext>
    : public std::iterator<std::random_access_iterator_tag, T, std::ptrdiff_t,
                           T *, T &> {
C
chengduoZH 已提交
1208
 public:
1209
  RowwiseTransformIterator(const T *ptr, int n) : ptr_(ptr), i_(0), n_(n) {}
C
chengduoZH 已提交
1210

1211
  RowwiseTransformIterator<T, platform::CPUDeviceContext> &operator++() {
C
chengduoZH 已提交
1212
    ++i_;
C
chengduoZH 已提交
1213 1214 1215
    if (UNLIKELY(i_ == n_)) {
      i_ = 0;
    }
C
chengduoZH 已提交
1216 1217 1218
    return *this;
  }

P
peizhilin 已提交
1219
  RowwiseTransformIterator<T, platform::CPUDeviceContext> &operator+(int n) {
P
peizhilin 已提交
1220
    while (n-- > 0) {
P
peizhilin 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229
      ++i_;
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
    }

    return *this;
  }

1230 1231
  bool operator==(const RowwiseTransformIterator<T, platform::CPUDeviceContext>
                      &rhs) const {
C
chengduoZH 已提交
1232
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
1233 1234
  }

1235 1236
  bool operator!=(const RowwiseTransformIterator<T, platform::CPUDeviceContext>
                      &rhs) const {
C
chengduoZH 已提交
1237
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
1238 1239
  }

1240
  const T &operator*() { return ptr_[i_]; }
C
chengduoZH 已提交
1241

C
chengduoZH 已提交
1242
 private:
1243
  const T *ptr_;
C
chengduoZH 已提交
1244
  int i_;
C
chengduoZH 已提交
1245
  int64_t n_;
C
chengduoZH 已提交
1246 1247 1248
};

template <typename T>
D
dzhwinter 已提交
1249 1250 1251
class MidWiseTransformIterator<T, platform::CPUDeviceContext>
    : public std::iterator<std::random_access_iterator_tag, T, std::ptrdiff_t,
                           T *, T &> {
C
chengduoZH 已提交
1252
 public:
1253
  MidWiseTransformIterator(const T *ptr, int n, int post)
C
chengduoZH 已提交
1254 1255
      : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

1256
  MidWiseTransformIterator<T, platform::CPUDeviceContext> &operator++() {
C
chengduoZH 已提交
1257
    ++j_;
C
chengduoZH 已提交
1258 1259
    if (UNLIKELY(j_ == post_)) {
      ++i_;
C
refine  
chengduoZH 已提交
1260
      j_ = 0;
C
chengduoZH 已提交
1261 1262 1263
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
C
chengduoZH 已提交
1264
    }
C
chengduoZH 已提交
1265 1266 1267
    return *this;
  }

P
peizhilin 已提交
1268
  MidWiseTransformIterator<T, platform::CPUDeviceContext> &operator+(int n) {
P
peizhilin 已提交
1269
    while (n-- > 0) {
P
peizhilin 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
      ++j_;
      if (UNLIKELY(j_ == post_)) {
        ++i_;
        j_ = 0;
        if (UNLIKELY(i_ == n_)) {
          i_ = 0;
        }
      }
    }
    return *this;
  }

1282 1283
  bool operator==(const MidWiseTransformIterator<T, platform::CPUDeviceContext>
                      &rhs) const {
C
chengduoZH 已提交
1284
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
1285 1286
  }

1287 1288
  bool operator!=(const MidWiseTransformIterator<T, platform::CPUDeviceContext>
                      &rhs) const {
C
chengduoZH 已提交
1289
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
1290 1291
  }

1292
  const T &operator*() { return ptr_[i_]; }
C
chengduoZH 已提交
1293

C
chengduoZH 已提交
1294
 private:
1295
  const T *ptr_;
C
refine  
chengduoZH 已提交
1296
  int64_t i_;
C
chengduoZH 已提交
1297 1298
  int64_t j_;
  int64_t n_;
C
refine  
chengduoZH 已提交
1299
  int64_t post_;
C
chengduoZH 已提交
1300 1301
};

C
chengduoZH 已提交
1302 1303
#ifdef __NVCC__
template <typename T>
Q
QI JUN 已提交
1304
class RowwiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
1305
    : public thrust::iterator_adaptor<
1306
          RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T *> {
C
chengduoZH 已提交
1307 1308
 public:
  typedef thrust::iterator_adaptor<
1309
      RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T *>
C
chengduoZH 已提交
1310
      super_t;
1311
  HOSTDEVICE RowwiseTransformIterator(const T *x, int n)
1312
      : super_t(x), begin_(x), n_(n) {}
C
chengduoZH 已提交
1313 1314 1315 1316
  friend class thrust::iterator_core_access;

 private:
  unsigned int n_;
1317
  const T *begin_;
C
chengduoZH 已提交
1318
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
1319 1320 1321 1322 1323
    return *(begin_ + (this->base() - begin_) % n_);
  }
};

template <typename T>
Q
QI JUN 已提交
1324
class MidWiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
1325
    : public thrust::iterator_adaptor<
1326
          MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T *> {
C
chengduoZH 已提交
1327 1328
 public:
  typedef thrust::iterator_adaptor<
1329
      MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T *>
C
chengduoZH 已提交
1330
      super_t;
1331
  HOSTDEVICE MidWiseTransformIterator(const T *x, int n, int post)
1332
      : super_t(x), begin_(x), n_(n), post_(post) {}
C
chengduoZH 已提交
1333 1334 1335 1336 1337
  friend class thrust::iterator_core_access;

 private:
  unsigned int post_;
  unsigned int n_;
1338
  const T *begin_;
C
chengduoZH 已提交
1339
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
1340 1341 1342 1343 1344
    return *(begin_ + (((this->base() - begin_) / post_) % n_));
  }
};
#endif

1345 1346
template <typename Functor, typename T, typename DeviceContext,
          typename OutType = T>
C
chengduoZH 已提交
1347 1348
class TransformFunctor {
 public:
1349
  TransformFunctor(const framework::Tensor *x, const framework::Tensor *y,
1350 1351
                   framework::Tensor *z, const DeviceContext &ctx, Functor func,
                   const bool is_xsize_larger = true)
C
chengduoZH 已提交
1352 1353
      : x_(x->data<T>()),
        y_(y->data<T>()),
1354
        z_(z->mutable_data<OutType>(ctx.GetPlace())),
C
chengduoZH 已提交
1355 1356
        nx_(x->numel()),
        ctx_(ctx),
1357 1358 1359 1360 1361 1362
        func_(func),
        is_xsize_larger_(is_xsize_larger) {
    if (is_xsize_larger_ == false) {
      nx_ = y->numel();
    }
  }
C
chengduoZH 已提交
1363 1364

  inline void Run() const {
Q
QI JUN 已提交
1365
    platform::Transform<DeviceContext> trans;
C
chengduoZH 已提交
1366
    trans(ctx_, x_, x_ + nx_, y_, z_, func_);
C
chengduoZH 已提交
1367 1368 1369
  }

  inline void RunRowWise(int n, int pre) const {
Q
QI JUN 已提交
1370
    platform::Transform<DeviceContext> trans;
1371 1372 1373 1374 1375 1376 1377
    if (is_xsize_larger_) {
      trans(ctx_, x_, x_ + nx_,
            RowwiseTransformIterator<T, DeviceContext>(y_, n), z_, func_);
    } else {
      trans(ctx_, y_, y_ + nx_,
            RowwiseTransformIterator<T, DeviceContext>(x_, n), z_, func_);
    }
C
chengduoZH 已提交
1378 1379 1380
  }

  inline void RunMidWise(int n, int pre, int post) const {
Q
QI JUN 已提交
1381
    platform::Transform<DeviceContext> trans;
1382 1383 1384 1385 1386 1387
    if (is_xsize_larger_) {
      trans(ctx_, x_, x_ + nx_,
            MidWiseTransformIterator<T, DeviceContext>(y_, n, post), z_, func_);
    } else {
      trans(ctx_, y_, y_ + nx_,
            MidWiseTransformIterator<T, DeviceContext>(x_, n, post), z_, func_);
1388 1389 1390
    }
  }

C
chengduoZH 已提交
1391
 private:
1392 1393 1394
  const T *x_;
  const T *y_;
  OutType *z_;
C
chengduoZH 已提交
1395
  int64_t nx_;
1396
  const DeviceContext &ctx_;
C
chengduoZH 已提交
1397
  Functor func_;
1398
  bool is_xsize_larger_;
C
chengduoZH 已提交
1399 1400
};

Y
Yu Yang 已提交
1401 1402
template <typename T, typename DX_OP, typename DY_OP>
struct ElemwiseGradNoBroadcast {
1403 1404 1405 1406
  const T *x_;
  const T *y_;
  const T *out_;
  const T *dout_;
Y
Yu Yang 已提交
1407 1408 1409 1410 1411 1412

  HOSTDEVICE void operator()(size_t i) {
    if (dx_ != nullptr) {
      dx_[i] = dx_op_(x_[i], y_[i], out_[i], dout_[i]);
    }
    if (dy_ != nullptr) {
C
chengduoZH 已提交
1413
      dy_[i] = dy_op_(x_[i], y_[i], out_[i], dout_[i]);
Y
Yu Yang 已提交
1414 1415 1416 1417 1418
    }
  }

  DX_OP dx_op_;
  DY_OP dy_op_;
1419 1420
  T *dx_;
  T *dy_;
Y
Yu Yang 已提交
1421 1422 1423
};

template <typename T, typename DX_OP, typename DY_OP>
1424
static void ElemwiseGradBroadcast1CPU(const T *x, const T *y, const T *out,
1425 1426
                                      const T *dout, int h, int w,
                                      bool is_xsize_larger, DX_OP dx_op,
1427
                                      DY_OP dy_op, T *dx, T *dy) {
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
  if (is_xsize_larger) {
    for (int i = 0; i < h; ++i) {
      for (int j = 0; j < w; ++j) {
        int x_offset = i * w + j;
        if (dx != nullptr) {
          dx[x_offset] =
              dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
        }
        if (dy != nullptr) {
          T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
          if (i == 0) {
            dy[j] = tmp;
          } else {
            dy[j] += tmp;
          }
        }
Y
Yu Yang 已提交
1444
      }
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
    }
  } else {  // x.dims < y.dims, broadcast for x.
    for (int i = 0; i < h; ++i) {
      for (int j = 0; j < w; ++j) {
        int y_offset = i * w + j;
        if (dy != nullptr) {
          dy[y_offset] =
              dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
        }
        if (dx != nullptr) {
          T tmp = dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
          if (i == 0) {
            dx[j] = tmp;
          } else {
            dx[j] += tmp;
          }
Y
Yu Yang 已提交
1461 1462 1463 1464 1465
        }
      }
    }
  }
}
1466

D
dzhwinter 已提交
1467
#ifdef __NVCC__
1468

Y
Yu Yang 已提交
1469
template <typename T, typename DX_OP, typename DY_OP>
1470 1471
static void ElemwiseGradBroadcast1CUDA(cudaStream_t stream, const T *x,
                                       const T *y, const T *out, const T *dout,
1472 1473
                                       int h, int w, bool is_xsize_larger,
                                       DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
1474 1475 1476 1477 1478 1479
  // For small case use 1D block
  constexpr int half_walf = 16;
  if (w < half_walf || h < half_walf) {
    int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
    int gird_size = w;
    ElemwiseGradBroadcast1CUDAKernel<<<gird_size, block_size, 0, stream>>>(
1480
        x, y, out, dout, h, w, is_xsize_larger, dx_op, dy_op, dx, dy);
1481 1482 1483 1484 1485
  } else {
    // suppose perfoemance improves with h increased.
    dim3 block_size = dim3(BLOCK_X, BLOCK_Y);
    int grid_size = (w + BLOCK_X - 1) / BLOCK_X;
    FastElemwiseGradBroadcast1CUDAKernel<<<grid_size, block_size, 0, stream>>>(
1486
        x, y, out, dout, h, w, is_xsize_larger, dx_op, dy_op, dx, dy);
1487
  }
Y
Yu Yang 已提交
1488 1489 1490 1491 1492
}

#endif

template <typename T, typename DX_OP, typename DY_OP>
1493 1494
static void ElemwiseGradBroadcast2CPU(const T *x, const T *y, const T *out,
                                      const T *dout, int pre, int n, int post,
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
                                      bool is_xsize_larger, DX_OP dx_op,
                                      DY_OP dy_op, T *dx, T *dy) {
  if (is_xsize_larger) {
    for (int i = 0; i < pre; ++i) {
      for (int j = 0; j < n; ++j) {
        for (int k = 0; k < post; ++k) {
          int x_offset = i * n * post + j * post + k;
          if (dx != nullptr) {
            dx[x_offset] =
                dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
          }
          if (dy != nullptr) {
            T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
            if (i == 0 && k == 0) {
              dy[j] = tmp;
            } else {
              dy[j] += tmp;
            }
          }
Y
Yu Yang 已提交
1514
        }
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
      }
    }
  } else {  // x.dims < y.dims, broadcast for x.
    for (int i = 0; i < pre; ++i) {
      for (int j = 0; j < n; ++j) {
        for (int k = 0; k < post; ++k) {
          int y_offset = i * n * post + j * post + k;
          if (dy != nullptr) {
            dy[y_offset] =
                dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
          }
          if (dx != nullptr) {
            T tmp = dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
            if (i == 0 && k == 0) {
              dx[j] = tmp;
            } else {
              dx[j] += tmp;
            }
Y
Yu Yang 已提交
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
          }
        }
      }
    }
  }
}

#ifdef __NVCC__
template <typename T, typename DX_OP, typename DY_OP>
static __global__ void ElemwiseGradBroadcast2CUDAKernel(
1543
    const T *x, const T *y, const T *out, const T *dout, int pre, int n,
1544
    int post, bool is_xsize_larger, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
Y
Yu Yang 已提交
1545 1546 1547
  int tid = threadIdx.x;
  int j = blockIdx.x;

C
chengduo 已提交
1548
  T val(0);
Y
Yu Yang 已提交
1549 1550
  int ttid = tid;

1551 1552 1553 1554 1555
  if (is_xsize_larger) {
    while (true) {
      int i = ttid / post;
      int k = ttid % post;
      if (i >= pre) break;
Y
Yu Yang 已提交
1556

1557
      int x_offset = i * n * post + j * post + k;
Y
Yu Yang 已提交
1558

1559 1560 1561 1562 1563 1564 1565 1566 1567
      if (dx != nullptr) {
        dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }

      if (dy != nullptr) {
        val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }

      ttid += ELEMWISE_MAX_BLOCK_DIM;
Y
Yu Yang 已提交
1568 1569
    }

1570 1571 1572 1573 1574 1575 1576
    if (dy) {
      int h = pre * post;
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
Y
Yu Yang 已提交
1577
    }
1578 1579 1580 1581 1582
  } else {  // x.dims < y.dims, broadcast for x.
    while (true) {
      int i = ttid / post;
      int k = ttid % post;
      if (i >= pre) break;
Y
Yu Yang 已提交
1583

1584
      int y_offset = i * n * post + j * post + k;
Y
Yu Yang 已提交
1585

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
      if (dy != nullptr) {
        dy[y_offset] = dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
      }

      if (dx != nullptr) {
        val += dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
      }

      ttid += ELEMWISE_MAX_BLOCK_DIM;
    }

    if (dx) {
      int h = pre * post;
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
Y
Yu Yang 已提交
1604 1605 1606 1607 1608
    }
  }
}

template <typename T, typename DX_OP, typename DY_OP>
1609 1610
static void ElemwiseGradBroadcast2CUDA(cudaStream_t stream, const T *x,
                                       const T *y, const T *out, const T *dout,
1611 1612
                                       int pre, int n, int post,
                                       bool is_xsize_larger, DX_OP dx_op,
1613
                                       DY_OP dy_op, T *dx, T *dy) {
Y
Yu Yang 已提交
1614 1615
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;
C
chengduoZH 已提交
1616
  ElemwiseGradBroadcast2CUDAKernel<<<gird_size, block_size, 0, stream>>>(
1617
      x, y, out, dout, pre, n, post, is_xsize_larger, dx_op, dy_op, dx, dy);
Y
Yu Yang 已提交
1618 1619 1620 1621
}

#endif

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
void CommonElementwiseBroadcastBackward(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dims,
    const framework::DDim &y_dims, const framework::Tensor &x,
    const framework::Tensor &y, const framework::Tensor &out,
    const framework::Tensor &dout, int axis, framework::Tensor *dx,
    framework::Tensor *dy, DX_OP dx_op, DY_OP dy_op) {
  int max_dim = std::max(x_dims.size(), y_dims.size());
  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
  std::vector<int> x_dims_array(max_dim);
  std::vector<int> y_dims_array(max_dim);
  std::vector<int> out_dims_array(max_dim);
  GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                         y_dims_array.data(), out_dims_array.data(), max_dim,
                         axis);

  // for inplace strategy. memset will make dx and dout clear and get wrong
  // result.
1640
  if (dx && dx->IsSharedBufferWith(dout)) {
1641 1642
    dx->clear();
    dx->mutable_data<T>(x_dims, ctx.GetPlace());
1643 1644
  }

1645 1646 1647 1648
  VLOG(3) << "CommonElementwiseBroadcastBackward xdims:"
          << framework::make_ddim(x_dims_array)
          << " ydim:" << framework::make_ddim(y_dims_array);

1649
  if (platform::is_gpu_place(ctx.GetPlace())) {
1650
#ifdef __NVCC__
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
    CommonGradBroadcastCUDA<T, DX_OP, DY_OP>(
        x, y, out, dout, dx, dy, x_dims_array.data(), y_dims_array.data(),
        out_dims_array.data(), max_dim,
        ctx.template device_context<platform::CUDADeviceContext>(), dx_op,
        dy_op);
#endif
  } else {
    CommonGradBroadcastCPU<T, DX_OP, DY_OP>(
        x, y, out, dout, dx, dy, x_dims_array.data(), y_dims_array.data(),
        out_dims_array.data(), max_dim,
        ctx.template device_context<platform::CPUDeviceContext>(), dx_op,
        dy_op);
1663 1664 1665
  }
}

1666 1667
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
void ElemwiseGradComputeNoBroadcast(
1668 1669 1670 1671 1672
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim, const framework::Tensor &x,
    const framework::Tensor &y, const framework::Tensor &out,
    const framework::Tensor &dout, int axis, framework::Tensor *dx,
    framework::Tensor *dy, DX_OP dx_op, DY_OP dy_op) {
1673
  size_t N = static_cast<size_t>(framework::product(x_dim));
D
dzhwinter 已提交
1674
#if !defined(_WIN32)
1675 1676
  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);
D
dzhwinter 已提交
1677 1678 1679 1680
#else
  platform::ForRange<DeviceContext> for_range(
      ctx.device_context<DeviceContext>(), N);
#endif  // !_WIN32
1681 1682 1683 1684 1685 1686 1687 1688
  for_range(ElemwiseGradNoBroadcast<T, DX_OP, DY_OP>{
      x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), dx_op, dy_op,
      dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
      dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace())});
}

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
void ElemwiseGradComputeWithBroadcast(
1689 1690
    const framework::ExecutionContext &ctx, const framework::DDim &x_dims,
    const framework::DDim &y_dims, const framework::Tensor &x,
1691 1692 1693
    const framework::Tensor &y, const framework::Tensor &out,
    const framework::Tensor &dout, int axis, framework::Tensor *dx,
    framework::Tensor *dy, DX_OP dx_op, DY_OP dy_op) {
1694
  bool is_xsize_larger = true;
1695

1696 1697 1698 1699 1700
  int max_dim = x_dims.size();
  if (x_dims.size() < y_dims.size()) {
    is_xsize_larger = false;
    max_dim = y_dims.size();
  }
1701

1702
  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
1703 1704 1705 1706 1707 1708 1709 1710 1711
  PADDLE_ENFORCE_GE(
      axis, 0,
      platform::errors::InvalidArgument(
          "Axis should be great than or equal to 0, but received axis is %d.",
          axis));
  PADDLE_ENFORCE_LT(axis, max_dim,
                    platform::errors::InvalidArgument(
                        "Axis should be less than %d, but received axis is %d.",
                        max_dim, axis));
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724

  int pre, n, post, is_run_common_broadcast, axis_trim = 0;
  if (is_xsize_larger) {
    auto y_dims_trimed = trim_trailing_singular_dims(y_dims);
    axis_trim = (y_dims_trimed.size() == 0) ? x_dims.size() : axis;
    get_mid_dims(x_dims, y_dims_trimed, axis_trim, &pre, &n, &post,
                 &is_run_common_broadcast);
  } else {
    auto x_dims_trimed = trim_trailing_singular_dims(x_dims);
    axis_trim = (x_dims_trimed.size() == 0) ? y_dims.size() : axis;
    get_mid_dims(y_dims, x_dims_trimed, axis_trim, &pre, &n, &post,
                 &is_run_common_broadcast);
  }
1725

1726 1727 1728 1729 1730 1731 1732
  // special case for common backward implementation.
  if (is_run_common_broadcast) {
    CommonElementwiseBroadcastBackward<DeviceContext, T, DX_OP, DY_OP>(
        ctx, x_dims, y_dims, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
    return;
  }
  if (post == 1) {
1733 1734 1735 1736
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
      ElemwiseGradBroadcast1CUDA(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
1737 1738
          y.data<T>(), out.data<T>(), dout.data<T>(), pre, n, is_xsize_larger,
          dx_op, dy_op,
1739 1740 1741 1742 1743
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      ElemwiseGradBroadcast1CPU(
1744
          x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), pre, n,
1745
          is_xsize_larger, dx_op, dy_op,
1746
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
1747 1748 1749 1750 1751 1752 1753
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
      ElemwiseGradBroadcast2CUDA(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
1754 1755 1756
          y.data<T>(), out.data<T>(), dout.data<T>(), pre, n, post,
          is_xsize_larger, dx_op, dy_op,
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
1757 1758 1759 1760 1761
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      ElemwiseGradBroadcast2CPU(
          x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), pre, n, post,
1762
          is_xsize_larger, dx_op, dy_op,
1763 1764 1765 1766 1767 1768
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
    }
  }
}

1769 1770 1771 1772 1773 1774 1775 1776 1777
template <typename Functor, typename DeviceContext, typename T,
          typename OutType = T>
void CommonElementwiseBroadcastForward(
    const framework::ExecutionContext &ctx, const framework::Tensor *x,
    const framework::Tensor *y, framework::Tensor *z,
    const framework::DDim &x_dims, const framework::DDim &y_dims, Functor func,
    int axis, const bool is_xsize_larger = true) {
  int max_dim = std::max(x_dims.size(), y_dims.size());
  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
1778 1779 1780 1781 1782 1783 1784 1785 1786
  PADDLE_ENFORCE_GE(
      axis, 0,
      platform::errors::InvalidArgument(
          "Axis should be great than or equal to 0, but received axis is %d.",
          axis));
  PADDLE_ENFORCE_LT(axis, max_dim,
                    platform::errors::InvalidArgument(
                        "Axis should be less than %d, but received axis is %d.",
                        max_dim, axis));
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
  std::vector<int> x_dims_array(max_dim);
  std::vector<int> y_dims_array(max_dim);
  std::vector<int> out_dims_array(max_dim);
  GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                         y_dims_array.data(), out_dims_array.data(), max_dim,
                         axis);

  if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
    CommonForwardBroadcastCUDA<Functor, T>(
        x, y, z, x_dims_array.data(), y_dims_array.data(),
        out_dims_array.data(), max_dim,
        ctx.template device_context<platform::CUDADeviceContext>(), func,
        is_xsize_larger);
#endif
  } else {
    CommonForwardBroadcastCPU<Functor, T, OutType>(
        x, y, z, x_dims_array.data(), y_dims_array.data(),
        out_dims_array.data(), max_dim,
        ctx.template device_context<platform::CPUDeviceContext>(), func,
        is_xsize_larger);
  }
}

Y
Yu Yang 已提交
1811
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
1812 1813 1814 1815 1816
void ElemwiseGradCompute(const framework::ExecutionContext &ctx,
                         const framework::Tensor &x, const framework::Tensor &y,
                         const framework::Tensor &out,
                         const framework::Tensor &dout, int axis,
                         framework::Tensor *dx, framework::Tensor *dy,
Y
Yu Yang 已提交
1817
                         DX_OP dx_op, DY_OP dy_op) {
1818 1819
  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
Y
Yu Yang 已提交
1820
  if (x.dims() == y.dims()) {
1821 1822
    ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
        ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
1823
  } else {
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
    ElemwiseGradComputeWithBroadcast<DeviceContext, T, DX_OP, DY_OP>(
        ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
  }
}

// NOTE(dzhwinter): Only used in elementwise_add, elementwise_sub.
// explicit gradient can cut off X, Y, Out from gradient op
// In elementwise_add, elementwise_sub, we use dout as fake X, Y, Out to reuse
// elementwise code.
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
1834 1835 1836 1837 1838 1839
void ElemwiseExplicitGradCompute(const framework::ExecutionContext &ctx,
                                 const framework::Tensor &x,
                                 const framework::Tensor &y,
                                 const framework::Tensor &out,
                                 const framework::Tensor &dout, int axis,
                                 framework::Tensor *dx, framework::Tensor *dy,
1840
                                 DX_OP dx_op, DY_OP dy_op) {
1841 1842 1843
  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
  if (x.dims() == y.dims()) {
1844
    ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
1845
        ctx, x_dim, y_dim, dout, dout, out, dout, axis, dx, dy, dx_op, dy_op);
1846
  } else {
1847 1848
    ElemwiseGradComputeWithBroadcast<DeviceContext, T, DX_OP, DY_OP>(
        ctx, x_dim, y_dim, dout, dout, out, dout, axis, dx, dy, dx_op, dy_op);
1849 1850
  }
}
F
fengjiayi 已提交
1851

1852 1853
template <typename Functor, typename DeviceContext, typename T,
          typename OutType = T>
1854 1855 1856 1857
void ElementwiseComputeEx(const framework::ExecutionContext &ctx,
                          const framework::Tensor *x,
                          const framework::Tensor *y, int axis, Functor func,
                          framework::Tensor *z) {
F
fengjiayi 已提交
1858
  auto x_dims = x->dims();
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
  auto y_dims = y->dims();
  bool is_xsize_larger = true;
  int max_dim = x_dims.size();
  if (x_dims.size() < y_dims.size()) {
    is_xsize_larger = false;
    max_dim = y_dims.size();
  }
  TransformFunctor<Functor, T, DeviceContext, OutType> functor(
      x, y, z, ctx.template device_context<DeviceContext>(), func,
      is_xsize_larger);
  if (x_dims == y_dims) {
F
fengjiayi 已提交
1870 1871 1872 1873
    functor.Run();
    return;
  }

1874
  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
1875 1876 1877 1878 1879 1880 1881 1882 1883
  PADDLE_ENFORCE_GE(
      axis, 0,
      platform::errors::InvalidArgument(
          "Axis should be great than or equal to 0, but received axis is %d.",
          axis));
  PADDLE_ENFORCE_LT(axis, max_dim,
                    platform::errors::InvalidArgument(
                        "Axis should be less than %d, but received axis is %d.",
                        max_dim, axis));
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902

  int pre, n, post, is_run_common_broadcast, axis_trim = 0;
  if (is_xsize_larger) {
    auto y_dims_trimed = trim_trailing_singular_dims(y_dims);
    axis_trim = (y_dims_trimed.size() == 0) ? x_dims.size() : axis;
    get_mid_dims(x_dims, y_dims_trimed, axis_trim, &pre, &n, &post,
                 &is_run_common_broadcast);
  } else {
    auto x_dims_trimed = trim_trailing_singular_dims(x_dims);
    axis_trim = (x_dims_trimed.size() == 0) ? y_dims.size() : axis;
    get_mid_dims(y_dims, x_dims_trimed, axis_trim, &pre, &n, &post,
                 &is_run_common_broadcast);
  }
  // special case for common implementation.
  // case 1: x=[2,3,1,5], y=[2,1,4,1]
  // case 2: x=[2,3,4], y=[1,1,4]
  if (is_run_common_broadcast == 1) {
    CommonElementwiseBroadcastForward<Functor, DeviceContext, T, OutType>(
        ctx, x, y, z, x_dims, y_dims, func, axis, is_xsize_larger);
1903 1904
    return;
  }
F
fengjiayi 已提交
1905 1906 1907 1908 1909 1910 1911 1912 1913
  if (post == 1) {
    functor.RunRowWise(n, pre);
    return;
  } else {
    functor.RunMidWise(n, pre, post);
    return;
  }
}

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
// FusedElemwiseAndAct
// --- forward
template <typename T, typename CompoundFunctor, bool KeepIntermediateOut>
struct FusedElemwiseAndActNoBroadcast {
  HOSTDEVICE void operator()(size_t i) {
    T y_val = y_[i];
    T x_val = x_[i];
    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor_.GetIntermediateOut(x_val, y_val);
      intermediate_out_[i] = intermeidiate_out;
      out_[i] =
          compound_functor_.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out_[i] = compound_functor_.GetOut(x_val, y_val);
    }
  }

  const T *x_;
  const T *y_;
  CompoundFunctor compound_functor_;
  T *out_;
  T *intermediate_out_;
};

// FusedElemwiseAndActBroadcast1:
// In this case, X and Y can be reshaped to a matrix.
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5) and axis = -1 or 2,
// X can be reshaped to (6, 20) and Y can be reshaped to (1, 20)
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast1CPU(const T *x, const T *y,
                                             CompoundFunctor compound_functor,
                                             int h, int w, T *out,
                                             T *intermediate_out) {
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int offset = i * w + j;

      T y_val = BcastY ? y[j] : y[offset];
      T x_val = BcastY ? x[offset] : x[j];
      int64_t intermediate_out_offset;
      if (KeepIntermediateOut) {
        T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

        if (SameShapeOfIntermediateOutAndOut) {
          // for the case of f1(f2(x, y))
          intermediate_out_offset = offset;
        } else if (BcastY) {
          intermediate_out_offset = j;
        } else {
          intermediate_out_offset = offset;
        }

        intermediate_out[intermediate_out_offset] = intermeidiate_out;
        out[offset] =
            compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
      } else {
        out[offset] = compound_functor.GetOut(x_val, y_val);
      }
    }
  }
}

// FusedElemwiseAndActBroadcast2
// In this case, X and Y can be reshaped to a matrix.
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4) and axis = 1,
// X can be reshaped to (2, 12, 5) and Y can be reshaped to (1, 12, 1)
// pre = 2, n = 12, post = 5
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast2CPU(const T *x, const T *y, int pre,
                                             int n, int post,
                                             CompoundFunctor compound_functor,
                                             T *out, T *intermediate_out) {
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int offset = i * n * post + j * post + k;

        T y_val = BcastY ? y[j] : y[offset];
        T x_val = BcastY ? x[offset] : x[j];
        int64_t intermediate_out_offset;

        if (KeepIntermediateOut) {
          T intermeidiate_out =
              compound_functor.GetIntermediateOut(x_val, y_val);

          if (SameShapeOfIntermediateOutAndOut) {
            // for the case of f1(f2(x, y))
            intermediate_out_offset = offset;
          } else if (BcastY) {
            intermediate_out_offset = j;
          } else {
            intermediate_out_offset = offset;
          }

          intermediate_out[intermediate_out_offset] = intermeidiate_out;
          out[offset] = compound_functor.GetOutUseIntermediateOut(
              x_val, intermeidiate_out);
        } else {
          out[offset] = compound_functor.GetOut(x_val, y_val);
        }
      }
    }
  }
}

#ifdef __NVCC__
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static __global__ void FusedElemwiseAndActBroadcast1CUDAKernel(
    const T *x, const T *y, int h, int w, CompoundFunctor compound_functor,
    T *out, T *intermediate_out) {
  int j = blockIdx.x;
  int i = threadIdx.x;

  while (i < h) {
    int offset = i * w + j;

    T y_val = BcastY ? y[j] : y[offset];
    T x_val = BcastY ? x[offset] : x[j];
    int64_t intermediate_out_offset;

    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

      if (SameShapeOfIntermediateOutAndOut) {
        // for the case of f1(f2(x, y))
        intermediate_out_offset = offset;
      } else if (BcastY) {
        intermediate_out_offset = j;
      } else {
        intermediate_out_offset = offset;
      }

      intermediate_out[intermediate_out_offset] = intermeidiate_out;
      out[offset] =
          compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out[offset] = compound_functor.GetOut(x_val, y_val);
    }

    i += ELEMWISE_MAX_BLOCK_DIM;
  }
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast1CUDA(cudaStream_t stream, const T *x,
                                              const T *y,
                                              CompoundFunctor compound_functor,
                                              int h, int w, T *out,
                                              T *intermediate_out) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
  int gird_size = w;
  FusedElemwiseAndActBroadcast1CUDAKernel<
      T, CompoundFunctor, BcastY, KeepIntermediateOut,
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
      x, y, h, w, compound_functor, out, intermediate_out);
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static __global__ void FusedElemwiseAndActBroadcast2CUDAKernel(
    const T *x, const T *y, CompoundFunctor compound_functor, int pre, int n,
    int post, T *out, T *intermediate_out) {
  int tid = threadIdx.x;
  int j = blockIdx.x;

  while (true) {
    int i = tid / post;
    int k = tid % post;
    if (i >= pre) break;

    int offset = i * n * post + j * post + k;

    T y_val = BcastY ? y[j] : y[offset];
    T x_val = BcastY ? x[offset] : x[j];
    int64_t intermediate_out_offset;

    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

      if (SameShapeOfIntermediateOutAndOut) {
        // for the case of f1(f2(x, y))
        intermediate_out_offset = offset;
      } else if (BcastY) {
        intermediate_out_offset = j;
      } else {
        intermediate_out_offset = offset;
      }

      intermediate_out[intermediate_out_offset] = intermeidiate_out;
      out[offset] =
          compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out[offset] = compound_functor.GetOut(x_val, y_val);
    }

    tid += ELEMWISE_MAX_BLOCK_DIM;
  }
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast2CUDA(cudaStream_t stream, const T *x,
                                              const T *y, int pre, int n,
                                              int post,
                                              CompoundFunctor compound_functor,
                                              T *out, T *intermediate_out) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;

  FusedElemwiseAndActBroadcast2CUDAKernel<
      T, CompoundFunctor, BcastY, KeepIntermediateOut,
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
      x, y, compound_functor, pre, n, post, out, intermediate_out);
}

#endif

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool KeepIntermediateOut>
void FusedElemwiseAndActComputeNoBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::Tensor &x, const framework::Tensor &y,
    CompoundFunctor compound_functor, framework::Tensor *out,
    framework::Tensor *intermediate_out) {
  size_t N = static_cast<size_t>(framework::product(x_dim));

  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);

  for_range(
      FusedElemwiseAndActNoBroadcast<T, CompoundFunctor, KeepIntermediateOut>{
          x.data<T>(), y.data<T>(), compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace())});
}

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool BcastY, bool KeepIntermediateOut,
          bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActComputeWithBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim_untrimed, const framework::Tensor &x,
    const framework::Tensor &y, CompoundFunctor compound_functor, int axis,
    framework::Tensor *out, framework::Tensor *intermediate_out) {
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

2168 2169
  int pre, n, post, is_run_common_broadcast;
  get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post, &is_run_common_broadcast);
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
  if (post == 1) {
    int h = pre;
    int w = n;
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
      FusedElemwiseAndActBroadcast1CUDA<T, CompoundFunctor, BcastY,
                                        KeepIntermediateOut,
                                        SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), compound_functor, h, w,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      FusedElemwiseAndActBroadcast1CPU<T, CompoundFunctor, BcastY,
                                       KeepIntermediateOut,
                                       SameShapeOfIntermediateOutAndOut>(
          x.data<T>(), y.data<T>(), compound_functor, h, w,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
      FusedElemwiseAndActBroadcast2CUDA<T, CompoundFunctor, BcastY,
                                        KeepIntermediateOut,
                                        SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), pre, n, post, compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      FusedElemwiseAndActBroadcast2CPU<T, CompoundFunctor, BcastY,
                                       KeepIntermediateOut,
                                       SameShapeOfIntermediateOutAndOut>(
          x.data<T>(), y.data<T>(), pre, n, post, compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
    }
  }
}

// --- backward
C
chengduo 已提交
2222 2223
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut>
2224 2225
struct FusedElemwiseAndActGradNoBroadcast {
  HOSTDEVICE void operator()(size_t i) {
2226 2227 2228 2229 2230 2231 2232
    T x_val = x_[i];
    T y_val = y_[i];
    T out_val = out_[i];
    T dout_val = dout_[i];
    T intermediate_out_val = UseIntermediateOut
                                 ? intermediate_out_[i]
                                 : dx_op_.GetIntermediateOut(x_val, y_val);
2233
    if (dx_ != nullptr) {
2234 2235
      dx_[i] = dx_op_.UseIntermediateOut(x_val, y_val, intermediate_out_val,
                                         out_val, dout_val);
2236 2237
    }
    if (dy_ != nullptr) {
2238 2239
      dy_[i] = dy_op_.UseIntermediateOut(x_val, y_val, intermediate_out_val,
                                         out_val, dout_val);
C
chengduo 已提交
2240 2241
    }
    if (dintermediate_ != nullptr) {
2242 2243
      dintermediate_[i] = dintermediate_op_.UseIntermediateOut(
          x_val, intermediate_out_val, out_val, dout_val);
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
    }
  }

  const T *x_;
  const T *y_;
  const T *intermediate_out_;
  const T *out_;
  const T *dout_;
  DX_OP dx_op_;
  DY_OP dy_op_;
C
chengduo 已提交
2254
  DIntermediate_OP dintermediate_op_;
2255 2256
  T *dx_;
  T *dy_;
C
chengduo 已提交
2257
  T *dintermediate_;
2258 2259 2260
};

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
2261
          typename DIntermediate_OP, bool UseIntermediateOut>
2262 2263 2264 2265 2266
void FusedElemwiseAndActGradComputeNoBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *intermediate_out,
    const framework::Tensor *out, const framework::Tensor *dout, int axis,
C
chengduo 已提交
2267 2268 2269
    framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
2270 2271 2272 2273
  size_t N = static_cast<size_t>(framework::product(x_dim));
  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);
  for_range(
C
chengduo 已提交
2274 2275
      FusedElemwiseAndActGradNoBroadcast<T, DX_OP, DY_OP, DIntermediate_OP,
                                         UseIntermediateOut>{
2276 2277
          x->data<T>(), y->data<T>(),
          intermediate_out ? intermediate_out->data<T>() : nullptr,
C
chengduo 已提交
2278
          out->data<T>(), dout->data<T>(), dx_op, dy_op, dintermediate_op,
2279
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
2280 2281 2282
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace())});
2283 2284
}

C
chengduo 已提交
2285 2286 2287 2288 2289 2290 2291
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast1CPU(
    const T *x, const T *y, const T *intermediate_out, const T *out,
    const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
  int64_t tmp_out_idx, x_idx, y_idx;
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int offset = i * w + j;

      tmp_out_idx = BcastY ? j : offset;
      y_idx = BcastY ? j : offset;
      x_idx = BcastY ? offset : j;

      if (SameShapeOfIntermediateOutAndOut) {
        tmp_out_idx = offset;
      }

      if (dx != nullptr) {
        T tmp = UseIntermediateOut
C
chengduo 已提交
2307 2308 2309 2310 2311
                    ? dx_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                               intermediate_out[tmp_out_idx],
                                               out[offset], dout[offset])
                    : dx_op.Recompute(x[x_idx], y[y_idx], out[offset],
                                      dout[offset]);
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324

        if (BcastY) {
          dx[x_idx] = tmp;
        } else {
          if (i == 0) {
            dx[x_idx] = tmp;
          } else {
            dx[x_idx] += tmp;
          }
        }
      }
      if (dy != nullptr) {
        T tmp = UseIntermediateOut
C
chengduo 已提交
2325 2326 2327 2328 2329
                    ? dy_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                               intermediate_out[tmp_out_idx],
                                               out[offset], dout[offset])
                    : dy_op.Recompute(x[x_idx], y[y_idx], out[offset],
                                      dout[offset]);
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
        if (BcastY) {
          if (i == 0) {
            dy[y_idx] = tmp;
          } else {
            dy[y_idx] += tmp;
          }
        } else {
          dy[y_idx] = tmp;
        }
      }
C
chengduo 已提交
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
      if (d_intermediate != nullptr) {
        T tmp = UseIntermediateOut
                    ? dintermediate_op.UseIntermediateOut(
                          x[x_idx], intermediate_out[tmp_out_idx], out[offset],
                          dout[offset])
                    : dintermediate_op.Recompute(x[x_idx], y[y_idx],
                                                 out[offset], dout[i]);
        if (SameShapeOfIntermediateOutAndOut) {
          d_intermediate[tmp_out_idx] = tmp;
        } else {
          if (i == 0) {
            d_intermediate[tmp_out_idx] = tmp;
          } else {
            d_intermediate[tmp_out_idx] += tmp;
          }
        }
      }
2357 2358 2359 2360
    }
  }
}

C
chengduo 已提交
2361 2362 2363 2364 2365 2366 2367
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast2CPU(
    const T *x, const T *y, const T *intermediate_out, const T *out,
    const T *dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
  int64_t tmp_out_idx, x_idx, y_idx;
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int offset = i * n * post + j * post + k;

        tmp_out_idx = BcastY ? j : offset;
        y_idx = BcastY ? j : offset;
        x_idx = BcastY ? offset : j;

        if (SameShapeOfIntermediateOutAndOut) {
          tmp_out_idx = offset;
        }

        if (dx != nullptr) {
          T tmp = UseIntermediateOut
C
chengduo 已提交
2384 2385 2386 2387 2388
                      ? dx_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                                 intermediate_out[tmp_out_idx],
                                                 out[offset], dout[offset])
                      : dx_op.Recompute(x[x_idx], y[y_idx], out[offset],
                                        dout[offset]);
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401

          if (BcastY) {
            dx[x_idx] = tmp;
          } else {
            if (i == 0 && k == 0) {
              dx[x_idx] = tmp;
            } else {
              dx[x_idx] += tmp;
            }
          }
        }
        if (dy != nullptr) {
          T tmp = UseIntermediateOut
C
chengduo 已提交
2402 2403 2404 2405 2406
                      ? dy_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                                 intermediate_out[tmp_out_idx],
                                                 out[offset], dout[offset])
                      : dy_op.Recompute(x[x_idx], y[y_idx], out[offset],
                                        dout[offset]);
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
          if (BcastY) {
            if (i == 0 && k == 0) {
              dy[y_idx] = tmp;
            } else {
              dy[y_idx] += tmp;
            }
          } else {
            dy[y_idx] = tmp;
          }
        }
C
chengduo 已提交
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
        if (d_intermediate != nullptr) {
          T tmp = UseIntermediateOut
                      ? dintermediate_op.UseIntermediateOut(
                            x[x_idx], intermediate_out[tmp_out_idx],
                            out[offset], dout[offset])
                      : dintermediate_op.Recompute(x[x_idx], y[y_idx],
                                                   out[offset], dout[i]);
          if (SameShapeOfIntermediateOutAndOut) {
            d_intermediate[tmp_out_idx] = tmp;
          } else {
            if (i == 0) {
              d_intermediate[tmp_out_idx] = tmp;
            } else {
              d_intermediate[tmp_out_idx] += tmp;
            }
          }
        }
2434 2435 2436 2437 2438 2439
      }
    }
  }
}

#ifdef __NVCC__
C
chengduo 已提交
2440 2441 2442
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
2443 2444
static __global__ void FusedElemwiseAndActGradBroadcast1CUDAKernel(
    const T *x, const T *y, const T *intermediate_out, const T *out,
C
chengduo 已提交
2445 2446
    const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
2447 2448 2449
  int j = blockIdx.x;
  int i = threadIdx.x;
  int tid = threadIdx.x;
C
chengduo 已提交
2450
  T val(0), inter_val(0);
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
  int64_t tmp_out_idx, x_idx, y_idx;

  do {
    int offset = i * w + j;

    tmp_out_idx = BcastY ? j : offset;
    y_idx = BcastY ? j : offset;
    x_idx = BcastY ? offset : j;

    if (SameShapeOfIntermediateOutAndOut) {
      tmp_out_idx = offset;
    }

    if (dx != nullptr) {
C
chengduo 已提交
2465 2466 2467 2468 2469 2470
      T tmp =
          UseIntermediateOut
              ? dx_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                         intermediate_out[tmp_out_idx],
                                         out[offset], dout[offset])
              : dx_op.Recompute(x[x_idx], y[y_idx], out[offset], dout[offset]);
2471 2472 2473 2474 2475 2476 2477 2478

      if (BcastY) {
        dx[x_idx] = tmp;
      } else {
        val += tmp;
      }
    }
    if (dy != nullptr) {
C
chengduo 已提交
2479 2480 2481 2482 2483 2484
      T tmp =
          UseIntermediateOut
              ? dy_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                         intermediate_out[tmp_out_idx],
                                         out[offset], dout[offset])
              : dy_op.Recompute(x[x_idx], y[y_idx], out[offset], dout[offset]);
2485 2486 2487 2488 2489 2490
      if (BcastY) {
        val += tmp;
      } else {
        dy[y_idx] = tmp;
      }
    }
C
chengduo 已提交
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
    if (d_intermediate != nullptr) {
      T tmp = UseIntermediateOut
                  ? dintermediate_op.UseIntermediateOut(
                        y[y_idx], intermediate_out[tmp_out_idx], out[offset],
                        dout[offset])
                  : dintermediate_op.Recompute(x[x_idx], y[y_idx], out[offset],
                                               dout[offset]);
      if (SameShapeOfIntermediateOutAndOut) {
        d_intermediate[tmp_out_idx] = tmp;
      } else {
        inter_val += tmp;
      }
    }
2504 2505 2506 2507

    i += ELEMWISE_MAX_BLOCK_DIM;
  } while (i < h);

C
chengduo 已提交
2508
  h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
  if (BcastY) {
    if (dy) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {
    if (dx) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
    }
  }
C
chengduo 已提交
2524 2525 2526 2527 2528 2529 2530 2531
  if (!SameShapeOfIntermediateOutAndOut) {
    if (d_intermediate) {
      inter_val = paddle::platform::reduceSum(inter_val, tid, h);
      if (threadIdx.x == 0) {
        d_intermediate[j] = inter_val;
      }
    }
  }
2532 2533
}

C
chengduo 已提交
2534 2535 2536 2537 2538 2539 2540
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast1CUDA(
    cudaStream_t stream, const T *x, const T *y, const T *intermediate_out,
    const T *out, const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
2541 2542 2543
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
  int gird_size = w;
  FusedElemwiseAndActGradBroadcast1CUDAKernel<
C
chengduo 已提交
2544
      T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut, BcastY,
2545
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
C
chengduo 已提交
2546 2547
      x, y, intermediate_out, out, dout, h, w, dx_op, dy_op, dintermediate_op,
      dx, dy, d_intermediate);
2548 2549
}

C
chengduo 已提交
2550 2551 2552
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
2553 2554
static __global__ void FusedElemwiseAndActGradBroadcast2CUDAKernel(
    const T *x, const T *y, const T *intermediate_out, const T *out,
C
chengduo 已提交
2555 2556
    const T *dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
2557 2558 2559
  int tid = threadIdx.x;
  int j = blockIdx.x;

C
chengduo 已提交
2560
  T val(0), inter_val(0);
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
  int ttid = tid;
  int64_t tmp_out_idx, x_idx, y_idx;
  while (true) {
    int i = ttid / post;
    int k = ttid % post;
    if (i >= pre) break;

    int offset = i * n * post + j * post + k;

    tmp_out_idx = BcastY ? j : offset;
    y_idx = BcastY ? j : offset;
    x_idx = BcastY ? offset : j;

    if (SameShapeOfIntermediateOutAndOut) {
      tmp_out_idx = offset;
    }

    if (dx != nullptr) {
C
chengduo 已提交
2579 2580 2581 2582 2583 2584
      T tmp =
          UseIntermediateOut
              ? dx_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                         intermediate_out[tmp_out_idx],
                                         out[offset], dout[offset])
              : dx_op.Recompute(x[x_idx], y[y_idx], out[offset], dout[offset]);
2585 2586 2587 2588 2589 2590 2591 2592

      if (BcastY) {
        dx[x_idx] = tmp;
      } else {
        val += tmp;
      }
    }
    if (dy != nullptr) {
C
chengduo 已提交
2593 2594 2595 2596 2597 2598
      T tmp =
          UseIntermediateOut
              ? dy_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                         intermediate_out[tmp_out_idx],
                                         out[offset], dout[offset])
              : dy_op.Recompute(x[x_idx], y[y_idx], out[offset], dout[offset]);
2599 2600 2601 2602 2603 2604
      if (BcastY) {
        val += tmp;
      } else {
        dy[y_idx] = tmp;
      }
    }
C
chengduo 已提交
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
    if (d_intermediate != nullptr) {
      T tmp = UseIntermediateOut
                  ? dintermediate_op.UseIntermediateOut(
                        y[y_idx], intermediate_out[tmp_out_idx], out[offset],
                        dout[offset])
                  : dintermediate_op.Recompute(x[x_idx], y[y_idx], out[offset],
                                               dout[offset]);
      if (SameShapeOfIntermediateOutAndOut) {
        d_intermediate[tmp_out_idx] = tmp;
      } else {
        inter_val += tmp;
      }
    }
2618 2619 2620
    ttid += ELEMWISE_MAX_BLOCK_DIM;
  }

C
chengduo 已提交
2621 2622
  int h = pre * post;
  h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
  if (BcastY) {
    if (dy) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {
    if (dx) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
    }
  }
C
chengduo 已提交
2638 2639 2640 2641 2642 2643 2644 2645
  if (!SameShapeOfIntermediateOutAndOut) {
    if (d_intermediate) {
      inter_val = paddle::platform::reduceSum(inter_val, tid, h);
      if (threadIdx.x == 0) {
        d_intermediate[j] = inter_val;
      }
    }
  }
2646 2647
}

C
chengduo 已提交
2648 2649 2650
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
2651 2652 2653
static void FusedElemwiseAndActGradBroadcast2CUDA(
    cudaStream_t stream, const T *x, const T *y, const T *intermediate_out,
    const T *out, const T *dout, int pre, int n, int post, DX_OP dx_op,
C
chengduo 已提交
2654 2655
    DY_OP dy_op, DIntermediate_OP dintermediate_op, T *dx, T *dy,
    T *dintermediate) {
2656 2657 2658
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;
  FusedElemwiseAndActGradBroadcast2CUDAKernel<
C
chengduo 已提交
2659
      T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut, BcastY,
2660
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
C
chengduo 已提交
2661 2662
      x, y, intermediate_out, out, dout, pre, n, post, dx_op, dy_op,
      dintermediate_op, dx, dy, dintermediate);
2663 2664 2665 2666
}
#endif

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
2667
          typename DIntermediate_OP, bool UseIntermediateOut, bool BcastY,
2668 2669 2670 2671 2672 2673
          bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActGradComputeWithBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim_untrimed, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *intermediate_out,
    const framework::Tensor *out, const framework::Tensor *dout, int axis,
C
chengduo 已提交
2674 2675 2676
    framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
2677 2678 2679 2680
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

2681 2682
  int pre, n, post, is_run_common_broadcast;
  get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post, &is_run_common_broadcast);
2683 2684 2685 2686 2687
  if (post == 1) {
    int h = pre;
    int w = n;
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
C
chengduo 已提交
2688 2689
      FusedElemwiseAndActGradBroadcast1CUDA<T, DX_OP, DY_OP, DIntermediate_OP,
                                            UseIntermediateOut, BcastY,
2690 2691 2692 2693
                                            SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x->data<T>(),
          y->data<T>(),
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
C
chengduo 已提交
2694
          out->data<T>(), dout->data<T>(), h, w, dx_op, dy_op, dintermediate_op,
2695
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
2696 2697 2698
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
2699 2700
#endif
    } else {
C
chengduo 已提交
2701 2702
      FusedElemwiseAndActGradBroadcast1CPU<T, DX_OP, DY_OP, DIntermediate_OP,
                                           UseIntermediateOut, BcastY,
2703 2704 2705
                                           SameShapeOfIntermediateOutAndOut>(
          x->data<T>(), y->data<T>(),
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
C
chengduo 已提交
2706
          out->data<T>(), dout->data<T>(), h, w, dx_op, dy_op, dintermediate_op,
2707
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
2708 2709 2710
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
2711 2712 2713 2714
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
C
chengduo 已提交
2715 2716
      FusedElemwiseAndActGradBroadcast2CUDA<T, DX_OP, DY_OP, DIntermediate_OP,
                                            UseIntermediateOut, BcastY,
2717 2718 2719 2720 2721
                                            SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x->data<T>(),
          y->data<T>(),
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
          out->data<T>(), dout->data<T>(), pre, n, post, dx_op, dy_op,
C
chengduo 已提交
2722
          dintermediate_op,
2723
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
2724 2725 2726
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
2727 2728
#endif
    } else {
C
chengduo 已提交
2729 2730
      FusedElemwiseAndActGradBroadcast2CPU<T, DX_OP, DY_OP, DIntermediate_OP,
                                           UseIntermediateOut, BcastY,
2731 2732 2733 2734
                                           SameShapeOfIntermediateOutAndOut>(
          x->data<T>(), y->data<T>(),
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
          out->data<T>(), dout->data<T>(), pre, n, post, dx_op, dy_op,
C
chengduo 已提交
2735
          dintermediate_op,
2736
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
2737 2738 2739
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
2740 2741 2742 2743 2744
    }
  }
}

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
2745 2746
          typename DIntermediate_OP, bool UseIntermediateOut,
          bool SameShapeOfIntermediateOutAndOut>
2747 2748 2749 2750
void FusedElemwiseAndActGradComputeEx(
    const framework::ExecutionContext &ctx, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *out,
    const framework::Tensor *intermediate_out, const framework::Tensor *dout,
C
chengduo 已提交
2751 2752 2753
    int axis, framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
2754 2755 2756
  const framework::DDim &x_dim = x->dims();
  const framework::DDim &y_dim = y->dims();
  if (UseIntermediateOut) {
2757 2758 2759
    PADDLE_ENFORCE_NOT_NULL(
        intermediate_out,
        platform::errors::InvalidArgument("Intermediate out is null pointer."));
2760 2761
  }
  if (x_dim == y_dim) {
C
chengduo 已提交
2762 2763
    FusedElemwiseAndActGradComputeNoBroadcast<
        DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut>(
2764
        ctx, x_dim, y_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
C
chengduo 已提交
2765
        dintermediate, dx_op, dy_op, dintermediate_op);
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
  } else {  // Y is a scalar
    bool bcast_y = x_dim.size() >= y_dim.size();
    if (x_dim.size() == y_dim.size()) {
      for (int i = 0; i < x_dim.size(); ++i) {
        if (x_dim[i] < y_dim[i]) {
          bcast_y = false;
          break;
        }
      }
    }

    // z = f1(x, f2(y))
    // z = f1(f2(x, y))
    if (bcast_y) {  // Y should be broadcast.
      FusedElemwiseAndActGradComputeWithBroadcast<
C
chengduo 已提交
2781 2782 2783 2784
          DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut,
          true /*BcastY*/, SameShapeOfIntermediateOutAndOut>(
          ctx, x_dim, y_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
          dintermediate, dx_op, dy_op, dintermediate_op);
2785 2786
    } else {
      FusedElemwiseAndActGradComputeWithBroadcast<
C
chengduo 已提交
2787 2788 2789 2790
          DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut,
          false /*BcastY*/, SameShapeOfIntermediateOutAndOut>(
          ctx, y_dim, x_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
          dintermediate, dx_op, dy_op, dintermediate_op);
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
    }
  }
}

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActComputeEx(const framework::ExecutionContext &ctx,
                                  const framework::Tensor &x,
                                  const framework::Tensor &y, int axis,
                                  CompoundFunctor compound_functor,
                                  framework::Tensor *out,
                                  framework::Tensor *intermediate_out) {
  if (KeepIntermediateOut) {
2804 2805 2806 2807 2808
    PADDLE_ENFORCE_NOT_NULL(
        intermediate_out,
        platform::errors::InvalidArgument(
            "The save_intermediate_out is opened, intermediate "
            "out is null pointer."));
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
  }

  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
  if (x.dims() == y.dims()) {
    FusedElemwiseAndActComputeNoBroadcast<DeviceContext, T, CompoundFunctor,
                                          KeepIntermediateOut>(
        ctx, x_dim, x, y, compound_functor, out, intermediate_out);
  } else {
    // Whether the shape of Y is a continuous subsequence of X,
    // For more information please refer to the op's introduction.
2820
    bool bcast_y = x.numel() >= y.numel();
2821 2822 2823 2824
    // z = f1(x, f2(y))
    // z = f1(f2(x, y))
    if (bcast_y) {  // Y should be broadcast.
      // In this case,
2825 2826
      // for 'f2(y)', the shape of intermediate_out should be equal to the
      // shape
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
      // of Y.
      // for 'f2(x, y)', the shape of intermediate_out should be equal to the
      // shape of Out.
      // the shape of Out should be equal to the shape of X.
      FusedElemwiseAndActComputeWithBroadcast<
          DeviceContext, T, CompoundFunctor, true /*BcastY*/,
          KeepIntermediateOut, SameShapeOfIntermediateOutAndOut>(
          ctx, x_dim /*OutShape*/, y_dim, x, y, compound_functor, axis, out,
          intermediate_out);
    } else {
      // In this case,
2838 2839
      // for 'f2(y)', the shape of intermediate_out should be equal to the
      // shape
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
      // of Out.
      // for 'f2(x, y)', the shape of intermediate_out should be equal to the
      // shape of Out.
      // the shape of Out should be equal to the shape of Y.
      FusedElemwiseAndActComputeWithBroadcast<
          DeviceContext, T, CompoundFunctor, false /*BcastY*/,
          KeepIntermediateOut, SameShapeOfIntermediateOutAndOut>(
          ctx, y_dim /*OutShape*/, x_dim, x, y, compound_functor, axis, out,
          intermediate_out);
    }
  }
}
2852 2853 2854 2855 2856 2857 2858 2859

template <typename DeviceContext, typename T>
static inline void GetDoubleGradSafeTensor(
    const framework::ExecutionContext &ctx, const framework::Tensor *x,
    const framework::Tensor *ddx, framework::Tensor *ddx_safe) {
  if (ddx) {
    *ddx_safe = *ddx;
  } else {
2860 2861
    auto &dev_ctx = ctx.template device_context<DeviceContext>();
    *ddx_safe = ctx.AllocateTmpTensor<T, DeviceContext>(x->dims(), dev_ctx);
2862 2863 2864 2865 2866 2867
    math::SetConstant<DeviceContext, T> set_zero;
    set_zero(ctx.template device_context<DeviceContext>(), ddx_safe,
             static_cast<T>(0));
  }
}

2868 2869
}  // namespace operators
}  // namespace paddle