framework.py 54.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
Q
qiaolongfei 已提交
16
import contextlib
F
fengjiayi 已提交
17
import re
18

Y
Yu Yang 已提交
19
import numpy as np
Q
qiaolongfei 已提交
20

21
import proto.framework_pb2 as framework_pb2
Q
qiaolongfei 已提交
22
from . import core
Y
Yu Yang 已提交
23
import unique_name
Y
Yu Yang 已提交
24

25
__all__ = [
26 27 28 29 30 31 32 33 34
    'Block',
    'Variable',
    'Program',
    'Operator',
    'default_startup_program',
    'default_main_program',
    'program_guard',
    'switch_startup_program',
    'switch_main_program',
X
xuwei06 已提交
35
    'get_var',
36
]
Y
Yu Yang 已提交
37

Q
qiaolongfei 已提交
38 39 40 41 42 43 44 45
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()


def grad_var_name(var_name):
    """
46 47
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
48 49 50
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
51

52
def convert_np_dtype_to_dtype_(np_dtype):
53 54
    """
    Convert the data type in numpy to the data type in Paddle
55

56
    Args:
57
        np_dtype(np.dtype): the data type in numpy.
58

59 60
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
61 62

    """
63 64
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
65
        return core.VarDesc.VarType.FP32
66
    elif dtype == np.float64:
67
        return core.VarDesc.VarType.FP64
68
    elif dtype == np.float16:
69
        return core.VarDesc.VarType.FP16
70
    elif dtype == np.int32:
71
        return core.VarDesc.VarType.INT32
72
    elif dtype == np.int16:
73
        return core.VarDesc.VarType.INT16
74
    elif dtype == np.int64:
75
        return core.VarDesc.VarType.INT64
76
    elif dtype == np.bool:
77
        return core.VarDesc.VarType.BOOL
78 79
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
80 81
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
82 83 84 85 86
    else:
        raise ValueError("Not supported numpy dtype " + str(dtype))


def dtype_is_floating(dtype):
87 88 89
    """
    Check the data type is floating or not.
    Args:
90
        dtype(np.dtype|core.VarDesc.VarType): data type.
91 92 93 94 95
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
96
    if not isinstance(dtype, core.VarDesc.VarType):
97 98
        dtype = convert_np_dtype_to_dtype_(dtype)

99 100 101 102
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
103 104


Y
Yang Yang(Tony) 已提交
105
def _debug_string_(proto, throw_on_error=True):
106 107 108 109 110 111 112 113 114 115 116
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
117
    error_fields = list()
Y
Yang Yang(Tony) 已提交
118
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
119 120
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
121 122 123
    return proto.__str__()


Y
Yu Yang 已提交
124
class Variable(object):
125
    """
126 127 128 129
    In Fluid, every input and output of an operator is a variable. In most 
    cases, variables are used for holding different kinds of data or training 
    labels. A variable belongs to a block. All variable has its own name and 
    two variables in different blocks could have the same name.
130

131 132
    There are many kinds of variables. Each kind of them has its own attributes 
    and usages. Please reference the framework.proto for details. 
133

134
    Most of a Variable's member variables can be setted to be None. It mean 
135
    it is not available or will be specified later.
136 137

    Args:
138
        block(Block): The block that the variable belongs to.
139 140
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
141 142
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
143
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
144
            Some kinds of variable do not contain shape, just set it to None.
145 146 147
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
148
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
149
            series data.
150
            Default: None
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
173 174
    """

Y
Yu Yang 已提交
175 176
    def __init__(self,
                 block,
Y
Yu Yang 已提交
177
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
178 179 180 181
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
182
                 capacity=None,
Q
QI JUN 已提交
183
                 persistable=None,
F
fengjiayi 已提交
184
                 error_clip=None,
Y
Yu Yang 已提交
185
                 stop_gradient=False,
F
fengjiayi 已提交
186
                 is_data=False,
Y
Yu Yang 已提交
187
                 **kwargs):
Y
Yu Yang 已提交
188
        self.block = block
F
fengjiayi 已提交
189
        self.error_clip = error_clip
Y
Yu Yang 已提交
190 191

        if name is None:
Y
Yu Yang 已提交
192
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
193 194 195 196
        is_new_var = False
        self.desc = self.block.desc.find_var(name)

        if self.desc is None:
D
dongzhihong 已提交
197
            self.desc = self.block.desc.var(name)
Y
Yu Yang 已提交
198
            is_new_var = True
Y
Yu Yang 已提交
199

Y
Yu Yang 已提交
200 201 202 203 204 205 206 207
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
208
        if shape is not None:
Y
Yu Yang 已提交
209
            if is_new_var:
210
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
211 212 213 214 215 216 217 218
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
219
        if dtype is not None:
220
            if not isinstance(dtype, core.VarDesc.VarType):
221
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
222
            if is_new_var:
F
fengjiayi 已提交
223
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
224
            else:
F
fengjiayi 已提交
225
                old_dtype = self.dtype
Q
QI JUN 已提交
226
                if dtype != old_dtype:
Y
Yu Yang 已提交
227 228 229 230 231
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
232 233

        if lod_level is not None:
Y
Yu Yang 已提交
234
            if is_new_var:
235
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
236 237 238 239 240 241 242
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
243 244 245 246 247 248 249 250 251 252 253
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

254 255 256 257 258 259 260 261
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
262
        self.block.vars[name] = self
Y
Yu Yang 已提交
263
        self.op = None
Y
Yu Yang 已提交
264
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
265
        self.is_data = is_data
Y
Yu Yang 已提交
266

267
    def __str__(self):
Y
Yang Yang(Tony) 已提交
268 269
        return self.to_string(True)

F
update  
fengjiayi 已提交
270
    def to_string(self, throw_on_error, with_details=False):
271 272 273 274
        """
        Get debug string.

        Args:
275 276
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
277
            with_details(bool): more details about variables and parameters
278 279
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
280

281 282
        Returns:
            str: The debug string.
283
        """
F
update  
fengjiayi 已提交
284 285
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
286 287
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.VarDesc.FromString(str(protostr))
F
update  
fengjiayi 已提交
288 289 290 291 292 293 294
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
                res_str += "%s: %s\n" % (attr_name,
                                         str(getattr(self, attr_name)))
        return res_str
295 296 297

    __repr__ = __str__

298
    def set_desc(self, input):
299 300 301 302 303 304 305 306 307
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
308 309
        self.desc = input

310 311 312 313
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
314 315 316 317
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
318 319
    @property
    def name(self):
320
        return self.desc.name()
Y
Yu Yang 已提交
321

T
typhoonzero 已提交
322 323 324 325
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
326 327 328
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
329
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
330 331

    @property
F
fengjiayi 已提交
332 333
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
334 335 336

    @property
    def lod_level(self):
337
        return self.desc.lod_level()
Y
Yu Yang 已提交
338

Y
Yu Yang 已提交
339 340 341 342
    @property
    def type(self):
        return self.desc.type()

343
    def set_error_clip(self, error_clip):
344 345 346 347 348 349 350 351 352
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
353 354
        self.error_clip = error_clip

Y
Yu Yang 已提交
355

F
fengjiayi 已提交
356 357 358
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
359

360 361
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
362 363 364 365 366 367 368 369 370 371
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
        op_proto = framework_pb2.OpProto.FromString(str(pbstr))
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
372 373 374 375
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
376 377 378 379 380 381 382 383 384
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
385
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
386 387 388 389 390 391
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
392 393 394 395 396 397 398 399
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
400 401
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
402 403
        return self.op_proto_map[type]

404 405 406 407 408 409 410
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.kOpRoleVarAttrName()
        }

F
fengjiayi 已提交
411

Y
Yu Yang 已提交
412
class Operator(object):
413
    """
414 415 416 417 418 419 420
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
421
        type(str): The type of operator. Default None.
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
        Block.append_op or Block.prepend_op instead.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
453
    """
454 455 456 457 458
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
typhoonzero 已提交
459
        'channel_recv', 'select', 'gen_nccl_id'
460
    }
461

Y
Yu Yang 已提交
462 463
    def __init__(self,
                 block,
Y
Yu Yang 已提交
464
                 desc,
Y
Yu Yang 已提交
465 466 467 468
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
469

Y
Yu Yang 已提交
470
        self.block = block
Y
Yu Yang 已提交
471
        self.desc = desc
T
typhoonzero 已提交
472
        self.attrs = attrs
Y
yuyang18 已提交
473 474 475 476 477 478 479 480
        if self.attrs is None:
            self.attrs = dict()
        del attrs

        op_maker = core.op_proto_and_checker_maker

        if op_maker.kOpRoleAttrName() not in self.attrs:
            self.attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
481 482 483 484 485 486 487 488

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
               op_role_var) != 0 and role_var_name not in self.attrs:
            self.attrs[role_var_name] = self.block.program.op_role_var

        if role_var_name in self.attrs and len(self.attrs[role_var_name]) == 0:
            del self.attrs[role_var_name]
Y
yuyang18 已提交
489

F
fengjiayi 已提交
490 491 492 493 494
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
495
        self.desc.set_type(type)
F
fengjiayi 已提交
496
        proto = OpProtoHolder.instance().get_op_proto(type)
497

Y
Yang Yang(Tony) 已提交
498 499
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
500
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
501 502
                    return True
            return False
Q
QI JUN 已提交
503

Y
Yang Yang(Tony) 已提交
504 505 506 507 508 509 510
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
511 512 513 514
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
515 516
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
517 518 519
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
Y
Yang Yu 已提交
520 521 522 523
                        if isinstance(arg, basestring):
                            in_arg_names.append(arg)
                        else:
                            in_arg_names.append(arg.name)
524
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
525 526
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
527

Y
Yu Yang 已提交
528
        if outputs is not None:
529 530 531 532 533 534 535
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
536 537
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
538 539
                                 (type, ", ".join(str(e) for e in need),
                                  ", ".join(str(e) for e in given)))
540

F
fengjiayi 已提交
541
            for out_proto in proto.outputs:
542 543 544 545
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
546 547
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
548 549 550 551 552 553
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
                    out_arg_names.append(arg.name)
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
554

Y
yuyang18 已提交
555 556
        if self.attrs is not None:
            if not isinstance(self.attrs, dict):
557
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
558
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
559
                attr_name = attr.name
Y
yuyang18 已提交
560 561
                if (attr_name not in self.attrs) or (
                        self.attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
562
                    continue
Y
yuyang18 已提交
563 564 565 566 567
                if isinstance(self.attrs[attr_name], Block):
                    self.desc.set_block_attr(attr_name,
                                             self.attrs[attr_name].desc)
                elif isinstance(self.attrs[attr_name], core.BlockDesc) or \
                        isinstance(self.attrs[attr_name], core.ProgramDesc):
T
typhoonzero 已提交
568
                    self.desc.set_serialized_attr(
Y
yuyang18 已提交
569
                        attr_name, self.attrs[attr_name].serialize_to_string())
Y
Yang Yang(Tony) 已提交
570
                else:
Y
yuyang18 已提交
571
                    self.desc.set_attr(attr_name, self.attrs[attr_name])
572
        self.desc.check_attrs()
573
        if self.has_kernel(type):
Q
QI JUN 已提交
574
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
575
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
576

577 578 579
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
580
    def to_string(self, throw_on_error):
581
        """
582 583
        Get debug string.

584
        Args:
585 586
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
587

588 589
        Returns:
            str: The debug string.
590 591

        """
592 593
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.OpDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
594 595 596 597
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
598 599 600

    __repr__ = __str__

F
fengjiayi 已提交
601 602 603 604 605
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
606
        """
607
        Get the input arguments according to the input parameter name.
608

609 610
        Args:
            name(str): The input parameter name.
611

612 613 614
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
615
        """
F
fengjiayi 已提交
616 617
        return self.desc.input(name)

T
typhoonzero 已提交
618
    def rename_input(self, old_name, new_name):
619 620 621 622 623 624 625 626 627 628
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
T
typhoonzero 已提交
629 630 631
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
632 633 634 635 636 637 638 639 640 641
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
T
typhoonzero 已提交
642 643
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
644 645 646 647
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
648 649 650 651 652 653 654 655
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
656
    def output(self, name):
657
        """
658
        Get output arguments by the output parameter name.
659

660 661
        Args:
            name(str): The output parameter name.
662

663 664 665
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
666
        """
F
fengjiayi 已提交
667 668 669 670 671 672
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

673 674 675 676 677 678 679 680
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
681
    def has_attr(self, name):
682
        """
683 684
        Whether this Operator has the attribute with name or not.

685
        Args:
686
            name(str): the attribute name.
687

688 689
        Returns:
            bool: True if has this attribute.
690 691

        """
F
fengjiayi 已提交
692 693 694
        return self.desc.has_attr(name)

    def attr_type(self, name):
695
        """
696
        Get the type of attribute by attribute's name.
697

698 699
        Args:
            name(str): the attribute name.
700

701 702
        Returns:
            core.AttrType: the attribute type.
703
        """
F
fengjiayi 已提交
704 705
        return self.desc.attr_type(name)

Y
yuyang18 已提交
706
    def set_attr(self, name, val):
707 708 709 710 711 712 713 714 715 716
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Y
yuyang18 已提交
717
        self.attrs[name] = val
Q
Qiyang Min 已提交
718 719 720 721 722 723 724
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            self.desc.set_attr(name, val)
Y
yuyang18 已提交
725

F
fengjiayi 已提交
726 727 728 729 730
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
731
        """
732 733
        Get the attribute by name.

734
        Args:
735
            name(str): the attribute name.
736

737 738
        Returns:
            bool|int|str|float|list: The attribute value. The return value
739 740
            can be any valid attribute type.
        """
F
fengjiayi 已提交
741
        return self.desc.attr(name)
Y
Yu Yang 已提交
742

F
fengjiayi 已提交
743
    def block_attr(self, name):
744
        """
745
        Get the block attribute by name.
746

747 748
        Args:
            name(str): the attribute name.
749

750 751
        Returns:
            int: the block index.
752
        """
F
fengjiayi 已提交
753
        return self.desc.block_attr(name)
Y
Yu Yang 已提交
754

J
JiayiFeng 已提交
755
    def all_attrs(self):
F
fengjiayi 已提交
756
        """
757 758 759 760
        Get the attribute dict.

        Returns:
            dict: The Operator's attribute dict.
F
fengjiayi 已提交
761 762 763 764 765 766 767 768 769 770
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
            if n == 'sub_block':
                attr_map[n] = self.block_attr(n)
            else:
                attr_map[n] = self.attr(n)
        return attr_map

Y
Yu Yang 已提交
771

Y
Yu Yang 已提交
772
class Block(object):
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
        use `Program.create_block()` to create a block.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
802
    def __init__(self, program, idx):
Y
Yu Yang 已提交
803
        self.desc = program.desc.block(idx)
804
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
805
        self.ops = list()  # operator list
Y
Yu Yang 已提交
806
        self.program = program
807
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
808

809
    def __str__(self):
Y
Yang Yang(Tony) 已提交
810 811
        return self.to_string(True)

F
fengjiayi 已提交
812 813
    def to_string(self, throw_on_error, with_details=False):
        """
814 815
        Get debug string.

F
fengjiayi 已提交
816 817
        Args:
            throw_on_error(bool): raise exception when self is not initialized
818
                when throw_on_error is True.
F
update  
fengjiayi 已提交
819
            with_details(bool): more details about variables and parameters
820 821
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
822

823 824
        Returns:
            str: The debug string.
F
fengjiayi 已提交
825 826 827 828
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
829
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
830 831 832
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
            for var in self.vars.itervalues():
F
fengjiayi 已提交
833
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
834
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
835
            for op in self.ops:
F
fengjiayi 已提交
836 837
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
838 839 840 841 842 843
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.BlockDesc.FromString(str(protostr))
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
844 845 846

    __repr__ = __str__

Y
Yu Yang 已提交
847 848
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
849
        return self.desc.parent
Y
Yu Yang 已提交
850

Y
Yu Yang 已提交
851 852 853 854 855
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

    def set_forward_block_idx(self, idx):
856 857 858 859 860 861 862 863 864
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
Y
Yu Yang 已提交
865 866
        self.desc.set_forward_block_idx(idx)

Y
Yu Yang 已提交
867 868
    @property
    def idx(self):
Y
Yu Yang 已提交
869
        return self.desc.id
Y
Yu Yang 已提交
870

Q
Qiao Longfei 已提交
871
    def var(self, name):
872 873 874 875 876 877 878 879 880 881 882 883 884
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
885
        if not isinstance(name, basestring):
886 887 888
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
889 890
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
891
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
892
        return v
Q
Qiao Longfei 已提交
893

F
fengjiayi 已提交
894
    def var_recursive(self, name):
895 896 897 898 899 900 901 902 903 904 905 906 907
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
934

Q
Qiao Longfei 已提交
935
    def all_parameters(self):
936 937 938 939 940
        return list(self.iter_parameters())

    def iter_parameters(self):
        return (item[1] for item in self.vars.iteritems()
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
941

Y
Yu Yang 已提交
942
    def create_var(self, *args, **kwargs):
943
        var = Variable(block=self, *args, **kwargs)
944 945
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
946
        return var
Y
Yu Yang 已提交
947

Q
Qiao Longfei 已提交
948 949 950
    def has_var(self, name):
        return name in self.vars

T
typhoonzero 已提交
951 952 953
    def rename_var(self, name, new_name):
        """
        Rename variable in vars and ops' inputs and outputs
954 955 956 957 958 959 960 961 962 963 964 965

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
966 967
        """
        if not self.has_var(name):
968
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
969 970
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
971
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
972 973 974 975 976 977 978
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
979
            var_type = "Variable"
T
wip  
typhoonzero 已提交
980 981 982 983
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
984
        orig_var_type = v.type
T
typhoonzero 已提交
985
        self.desc.rename_var(name, new_name)
T
typhoonzero 已提交
986
        # NOTE: v is destroyed by C++ after calling rename_var.
T
wip  
typhoonzero 已提交
987
        d = self.desc.find_var(new_name)
T
typhoonzero 已提交
988
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
989 990 991 992
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
993
                type=orig_var_type,
T
wip  
typhoonzero 已提交
994 995 996 997 998 999 1000
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1001
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1002 1003
            var = Variable(
                self,
T
typhoonzero 已提交
1004
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1005 1006 1007 1008 1009 1010 1011 1012
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

        # rename the python side, sync_with_cpp will only add
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
T
typhoonzero 已提交
1013
        self.sync_with_cpp()
1014
        return var
T
typhoonzero 已提交
1015

1016 1017 1018 1019 1020
    def remove_var(self, name):
        self.sync_with_cpp()
        self.desc.remove_var(name)
        del self.vars[name]

Y
Yu Yang 已提交
1021 1022
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1023
        param = Parameter(global_block, *args, **kwargs)
1024 1025
        if 'initializer' in kwargs:
            kwargs['initializer'](param, self)
Q
Qiao Longfei 已提交
1026
        return param
Y
Yu Yang 已提交
1027

Y
Yu Yang 已提交
1028
    def append_op(self, *args, **kwargs):
1029 1030 1031 1032 1033 1034
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1035
        op_desc = self.desc.append_op()
1036
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1037 1038 1039
        self.ops.append(op)
        return op

Q
qiaolongfei 已提交
1040
    def insert_op(self, index, *args, **kwargs):
1041 1042 1043 1044 1045 1046 1047 1048 1049
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
Q
qiaolongfei 已提交
1050 1051 1052 1053 1054 1055
        self.sync_with_cpp()
        op_desc = self.desc.insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

1056
    def remove_op(self, index):
1057 1058 1059 1060 1061 1062 1063 1064 1065
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
1066 1067 1068 1069
        self.sync_with_cpp()
        self.desc.remove_op(index, index + 1)
        del self.ops[index]

Y
Yancey1989 已提交
1070
    def slice_ops(self, start, end):
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1081
        return self.ops[start:end]
Y
Yancey1989 已提交
1082

Y
Yu Yang 已提交
1083
    def prepend_op(self, *args, **kwargs):
Y
Yu Yang 已提交
1084 1085
        op_desc = self.desc.prepend_op()
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1086
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1087 1088
        return op

Q
Qiao Longfei 已提交
1089
    def sync_with_cpp(self):
1090
        """
1091 1092
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1093
        """
Q
Qiao Longfei 已提交
1094 1095 1096 1097 1098
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1099 1100 1101 1102 1103
        # sync variables removed from c++ end
        for var in self.vars.keys():
            if not self.desc.find_var(var):
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1104
        # sync operators from cpp
1105 1106 1107 1108
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1125 1126 1127 1128 1129

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1130
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1131 1132 1133 1134 1135 1136 1137

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1151 1152 1153 1154
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

1155 1156
    def copy_param_info_from(self, other):
        """
1157 1158
        Copy the information of parameters from the other block.

1159
        Args:
1160 1161 1162 1163 1164
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

        Returns:
            None
        """
        if not isinstance(other, Block):
            raise TypeError("copy_param_info_from should be invoked with Block")
        for p in other.iter_parameters():
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
                raise ValueError("copy_param_info_from should be invoked with "
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1188
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1189
                error_clip=p.error_clip,
1190 1191 1192
                name=v.name)
            self.vars[new_p.name] = new_p

1193 1194 1195
    def clone_variable(self, var):
        """
        Clone a variable into current block.
1196

1197 1198 1199 1200
        Args:
            var: the variable to be cloned.

        Returns:
1201
            Variable: the new  variable cloned from 'var' in current block.
1202 1203
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1204 1205 1206 1207 1208
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1209 1210 1211 1212 1213 1214
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1215 1216
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1217 1218 1219 1220 1221 1222 1223
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1224 1225
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1226
        return ret_var
1227

Y
Yu Yang 已提交
1228 1229

class Program(object):
D
dzhwinter 已提交
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
    default_main_program run in every minibatch and adjust the weights.

    Args:
        None

    Returns:
        Python Program

    Examples:
       .. code-block:: python

         main_program = Program()
         startup_program = Program()
         with fluid.program_guard(main_program=main_program, startup_program=startup_program):
            fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
            fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
            fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")

    """

1261 1262
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1263 1264
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1265
        self._seed = 0
Y
yuyang18 已提交
1266
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1267
        self._op_role_var = []
Y
yuyang18 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

    @property
    def op_role(self):
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1283
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1284 1285 1286 1287 1288

    @contextlib.contextmanager
    def optimized_guard(self, var):
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
Y
yuyang18 已提交
1289
        self._op_role_var = [var.name if isinstance(var, Variable) else var]
Y
yuyang18 已提交
1290
        yield
Y
yuyang18 已提交
1291
        self._op_role_var = []
Y
yuyang18 已提交
1292
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1293

1294
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1295 1296
        return self.to_string(True)

F
fengjiayi 已提交
1297 1298 1299 1300 1301 1302
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
F
update  
fengjiayi 已提交
1303 1304
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True
F
fengjiayi 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(str(protostr))
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1320

1321 1322 1323
    def get_desc(self):
        return self.desc

1324 1325
    def clone(self, for_test=False):
        """Clone the Program object
D
dzhwinter 已提交
1326 1327
        Args:
           for_test(bool): indicate whether clone for test.
1328 1329

        Set for_test to False when we want to clone the program for training.
1330
        Set for_test to True when we want to clone the program for testing.
1331 1332 1333 1334 1335

        Args:
            for_test(bool): Some operators, such as batch_norm and drop_out ops,
                behave differently in training and testing. If for_test is True,
                the is_test attributes in these operators will be set to True for
1336 1337
                testing purposes, otherwise, they remain unchanged.

D
dzhwinter 已提交
1338 1339 1340
        Returns:
            Program: The cloned Program object.

1341 1342
        """
        if for_test:
1343
            p = self.inference_optimize()
1344
        else:
1345
            p = Program()
1346
            p.desc = core.ProgramDesc(self.desc)
1347 1348 1349
            p.blocks = [Block(p, i) for i in xrange(self.desc.num_blocks())]
            p.sync_with_cpp()

1350
        p.copy_param_info_from(self)
F
fengjiayi 已提交
1351
        p.copy_data_info_from(self)
Y
Yu Yang 已提交
1352
        return p
1353

1354 1355 1356 1357 1358 1359 1360
    def prune(self, targets):
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1361 1362
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1363
                    # and we need to find the current op that generate this
1364 1365 1366 1367 1368 1369 1370 1371
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1372
                    t = t.op
1373 1374 1375 1376
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1377
                else:
1378 1379
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1380 1381 1382 1383 1384 1385 1386 1387

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

1388
    def inference_optimize(self):
1389 1390
        # this is an alternative implement before
        # core.inference_optimize being fixed.
1391
        res = Program()
1392 1393 1394 1395 1396 1397 1398
        res.desc = core.ProgramDesc(self.desc)
        for i in xrange(res.desc.num_blocks()):
            block = res.desc.block(i)
            for j in xrange(block.op_size()):
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
1399 1400 1401 1402
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

1403 1404 1405 1406
    @staticmethod
    def parse_from_string(binary_str):
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
1407
        p.blocks = [Block(p, i) for i in xrange(p.desc.num_blocks())]
1408 1409
        p.sync_with_cpp()
        return p
Y
Yu Yang 已提交
1410

D
dzhwinter 已提交
1411 1412 1413 1414
    @property
    def random_seed(self):
        return self._seed

Q
qiaolongfei 已提交
1415 1416 1417 1418
    @property
    def num_blocks(self):
        return self.desc.num_blocks()

D
dzhwinter 已提交
1419 1420 1421 1422 1423 1424
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1425 1426
    def __repr__(self):
        return str(self)
1427

Y
Yu Yang 已提交
1428 1429 1430
    def global_block(self):
        return self.blocks[0]

Q
Qiao Longfei 已提交
1431 1432 1433
    def block(self, index):
        return self.blocks[index]

Y
Yu Yang 已提交
1434 1435 1436
    def current_block(self):
        return self.blocks[self.current_block_idx]

F
update  
fengjiayi 已提交
1437
    def create_block(self, parent_idx=None):
Y
Yu Yang 已提交
1438
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1439 1440 1441
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1442 1443 1444 1445 1446 1447 1448
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
        self.current_block_idx = self.current_block().parent_idx

Q
Qiao Longfei 已提交
1449 1450 1451 1452 1453 1454
    def sync_with_cpp(self):
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
            block.sync_with_cpp()

1455 1456
    def copy_param_info_from(self, other):
        """
1457
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        self.global_block().copy_param_info_from(other.global_block())

F
fengjiayi 已提交
1474 1475 1476
    def copy_data_info_from(self, other):
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1477

F
fengjiayi 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        for var in other.global_block().vars.itervalues():
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1495 1496 1497 1498 1499
    def list_vars(self):
        for each_block in self.blocks:
            for each_var in each_block.vars.itervalues():
                yield each_var

Y
Yu Yang 已提交
1500

Y
Yu Yang 已提交
1501
class Parameter(Variable):
1502 1503 1504 1505 1506 1507
    """
    Parameter is derived from Variable. A parameter is a persistable 
    Variable, and will be updated by optimizers after each iteration.
    The training of a neural network is essentially the updating of 
    its parameters.

1508
    Relative to a general Variable, a Parameter has several its own
1509 1510
    member variables:

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
1523 1524
    """

Y
Yu Yang 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
1535 1536 1537

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
1538 1539 1540 1541
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

1542 1543
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
1544
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
1545

W
wanghaoshuang 已提交
1546
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
1547

F
fengjiayi 已提交
1548 1549 1550
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
1551 1552 1553
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
1554

F
update  
fengjiayi 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
1569
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
1570 1571 1572 1573 1574
            for attr_name in additional_attr:
                res_str += "%s: %s\n" % (attr_name,
                                         str(getattr(self, attr_name)))
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
1575 1576 1577 1578
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
1579

Y
Yu Yang 已提交
1580
# program is a global instance.
Y
Yu Yang 已提交
1581 1582
_main_program_ = Program()
_startup_program_ = Program()
1583

1584

1585
def default_startup_program():
Y
Yu Yang 已提交
1586 1587 1588
    """
    Get default startup program. In startup program, Paddle will initialize
    parameters, initialize nccl handle, etc.
1589

Y
Yu Yang 已提交
1590 1591 1592
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
1593
    return _startup_program_
1594

1595

1596
def default_main_program():
Y
Yu Yang 已提交
1597 1598
    """
    Get default main program. The main program is used for training or testing.
1599

Y
Yu Yang 已提交
1600 1601 1602
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
1603
    return _main_program_
Y
Yu Yang 已提交
1604 1605 1606 1607 1608


def switch_main_program(program):
    """
    Switch the main program to a new program.
1609

Y
Yu Yang 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
1624
    Switch the startup program to a new program
Y
Yu Yang 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
    Switch program with `with` statement
1641

Y
Yu Yang 已提交
1642 1643 1644 1645
    Examples:
        >>> with program_guard(Program()):
        >>>   data = fluid.layers.data(...)
        >>>   hidden = fluid.layers.fc(...)
1646

Y
Yu Yang 已提交
1647 1648
    Args:
        main_program(Program): New main program inside `with` statement
1649
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
            None means do not change startup program.

    Returns:
        None
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681


def get_var(name, program=None):
    """
    Get a variable by name from the global block of a program
    Args:
        name(str): name of the variable
        program(Program|None): program object.
             If None, default_global_program() will be used.

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
1682
    assert isinstance(program, Program)
X
xuwei06 已提交
1683 1684

    return program.global_block().var(name)