executor.cc 20.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

D
dzhwinter 已提交
15 16
#include <algorithm>

Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/executor.h"
Y
Yang Yang 已提交
18

19
#include "paddle/fluid/framework/channel.h"
Y
Yi Wang 已提交
20 21 22 23 24
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
G
gongweibao 已提交
25
#include "paddle/fluid/operators/detail/macros.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
27
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
28

D
dzhwinter 已提交
29
DECLARE_bool(benchmark);
30
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
Q
qijun 已提交
31 32 33

namespace paddle {
namespace framework {
X
Xin Pan 已提交
34 35 36 37 38
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
39

Q
Qiao Longfei 已提交
40 41 42
ExecutorPrepareContext::ExecutorPrepareContext(
    const framework::ProgramDesc& prog, size_t block_id)
    : prog_(prog), block_id_(block_id) {}
Y
Yu Yang 已提交
43

Q
Qiao Longfei 已提交
44 45 46
ExecutorPrepareContext::~ExecutorPrepareContext() {
  VLOG(5) << "destroy ExecutorPrepareContext";
}
Y
Yu Yang 已提交
47

D
dzhwinter 已提交
48
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
49

Y
Yancey1989 已提交
50
void Executor::Close() {
W
Wu Yi 已提交
51
#ifdef PADDLE_WITH_DISTRIBUTE
Y
Yancey1989 已提交
52 53
  ::paddle::operators::distributed::RPCClient::GetInstance<
      ::paddle::operators::distributed::GRPCClient>()
Y
Yancey1989 已提交
54
      ->SendComplete();
W
Wu Yi 已提交
55
#endif
Y
Yancey1989 已提交
56
}
W
Wu Yi 已提交
57

Y
Stash  
Yu Yang 已提交
58
void InitializeVariable(Variable* var, proto::VarType::Type var_type) {
59
  if (var_type == proto::VarType::LOD_TENSOR) {
Q
QI JUN 已提交
60
    var->GetMutable<LoDTensor>();
61
  } else if (var_type == proto::VarType::SELECTED_ROWS) {
Q
QI JUN 已提交
62
    var->GetMutable<SelectedRows>();
63
  } else if (var_type == proto::VarType::FEED_MINIBATCH) {
Q
QI JUN 已提交
64
    var->GetMutable<FeedFetchList>();
65
  } else if (var_type == proto::VarType::FETCH_LIST) {
Q
QI JUN 已提交
66
    var->GetMutable<FeedFetchList>();
67
  } else if (var_type == proto::VarType::STEP_SCOPES) {
Y
Yu Yang 已提交
68
    var->GetMutable<std::vector<framework::Scope>>();
69
  } else if (var_type == proto::VarType::LOD_RANK_TABLE) {
Y
Yu Yang 已提交
70
    var->GetMutable<LoDRankTable>();
71
  } else if (var_type == proto::VarType::LOD_TENSOR_ARRAY) {
Y
Yu Yang 已提交
72
    var->GetMutable<LoDTensorArray>();
73
  } else if (var_type == proto::VarType::PLACE_LIST) {
Y
Yang Yu 已提交
74
    var->GetMutable<platform::PlaceList>();
75
  } else if (var_type == proto::VarType::READER) {
F
fengjiayi 已提交
76
    var->GetMutable<ReaderHolder>();
77 78
  } else if (var_type == proto::VarType::CHANNEL) {
    var->GetMutable<ChannelHolder>();
T
typhoonzero 已提交
79 80
  } else if (var_type == proto::VarType::RAW) {
    // GetMutable will be called in operator
Q
QI JUN 已提交
81 82
  } else {
    PADDLE_THROW(
Y
Yu Yang 已提交
83
        "Variable type %d is not in "
F
fengjiayi 已提交
84
        "[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, "
T
typhoonzero 已提交
85
        "LOD_RANK_TABLE, PLACE_LIST, READER, CHANNEL, RAW]",
Y
Yu Yang 已提交
86
        var_type);
Q
QI JUN 已提交
87 88 89
  }
}

L
Liu Yiqun 已提交
90 91 92
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
93 94 95 96 97 98 99 100 101 102 103 104 105 106

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
107
        InitializeVariable(ptr, var->GetType());
108 109 110 111
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
      } else {
        auto* ptr = scope->Var(var->Name());
112
        InitializeVariable(ptr, var->GetType());
113 114 115 116 117 118 119
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
120
      InitializeVariable(ptr, var->GetType());
121 122 123 124 125 126
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
    }
  }
}

Y
Yu Yang 已提交
127
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
T
typhoonzero 已提交
128
                   bool create_local_scope, bool create_vars) {
X
Xin Pan 已提交
129
  platform::RecordBlock b(block_id);
130
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
Q
Qiao Longfei 已提交
131 132
  auto ctx = Prepare(pdesc, block_id);
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
133 134
}

135 136 137 138 139 140 141
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
142
    const BlockDesc& block,
L
Liu Yiqun 已提交
143
    const std::map<std::string, const LoDTensor*>& feed_targets,
144 145
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
146
  for (auto* op : block.AllOps()) {
147 148
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
149
      // The input variable's name of feed_op should be feed_holder_name.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

165
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
166
      // When feed operator are present, so should be feed_holder.
167 168 169 170 171 172 173
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
174 175 176 177 178 179 180 181 182 183 184 185
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
186 187
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
188 189
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
190
  for (auto* op : block.AllOps()) {
191 192
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
193
      // The output variable's name of fetch_op should be fetch_holder_name.
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

209
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
210
      // When fetch operator are present, so should be fetch_holder.
211 212 213 214 215 216 217
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
218 219 220 221 222 223
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
224 225
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
226 227
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
228
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
229
  platform::RecordBlock b(kProgramId);
230
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
231
  bool has_feed_ops =
232
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
233
  bool has_fetch_ops =
234
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
235 236

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
237
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
238
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
239 240
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
241
  }
242 243
  auto* global_block = copy_program->MutableBlock(0);

244
  if (!has_feed_ops) {
245 246
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
247
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
248 249 250
    feed_holder->SetPersistable(true);

    int i = 0;
251
    for (auto& feed_target : (*feed_targets)) {
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
      std::string var_name = feed_target.first;
      VLOG(3) << "feed target's name: " << var_name;

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

267
  if (!has_fetch_ops) {
268 269
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
270
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
271 272 273
    fetch_holder->SetPersistable(true);

    int i = 0;
274
    for (auto& fetch_target : (*fetch_targets)) {
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
      std::string var_name = fetch_target.first;
      VLOG(3) << "fetch target's name: " << var_name;

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

290
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
291 292 293
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
294 295
}

Q
Qiao Longfei 已提交
296 297
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
    const ProgramDesc& program, int block_id) {
D
dzhwinter 已提交
298
  VLOG(3) << "before create prepare" << block_id << " " << program.Size();
Q
Qiyang Min 已提交
299 300
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
D
dzhwinter 已提交
301 302 303
  VLOG(3) << "after create prepare";
 // PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  VLOG(3) << "before create op_desc";
Y
Yu Yang 已提交
304
  auto& block = program.Block(block_id);
D
dzhwinter 已提交
305 306
  VLOG(3) << "create before" << ctx->ops_.size() << " " << block.AllOps().size();
  int counter = 0;
Y
Yu Yang 已提交
307 308
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
D
dzhwinter 已提交
309
      VLOG(3) << "create op " << "index " << ++counter << " type " << op_desc->Type();
Y
Yu Yang 已提交
310
  }
D
dzhwinter 已提交
311
  VLOG(3) << "create finished" << ctx->ops_.size() << " " << block.AllOps().size();
Q
Qiyang Min 已提交
312
  return ctx;
Y
Yu Yang 已提交
313 314
}

T
refine  
typhoonzero 已提交
315
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
T
typhoonzero 已提交
316
    const ProgramDesc& program, const std::vector<int>& block_ids) {
D
dzhwinter 已提交
317
  VLOG(3) << "inside prepare";
T
typhoonzero 已提交
318
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
D
dzhwinter 已提交
319
  VLOG(3) << "before go through block_ids";
T
typhoonzero 已提交
320
  for (auto& bid : block_ids) {
D
dzhwinter 已提交
321
    VLOG(3) << "block id" << bid;
T
typhoonzero 已提交
322
    auto* ctx = new ExecutorPrepareContext(program, bid);
D
dzhwinter 已提交
323
    //PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
T
typhoonzero 已提交
324
    auto& block = program.Block(bid);
D
dzhwinter 已提交
325 326
    int counter = 0;
    VLOG(3) << "create before" << ctx->ops_.size() << " " << block.AllOps().size();
T
typhoonzero 已提交
327
    for (auto& op_desc : block.AllOps()) {
D
dzhwinter 已提交
328

T
typhoonzero 已提交
329
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
D
dzhwinter 已提交
330
      VLOG(3) << "create op " << "index " << ++counter << " type " << op_desc->Type();
T
typhoonzero 已提交
331
    }
D
dzhwinter 已提交
332
    VLOG(3) << "create finished" << ctx->ops_.size() << " " << block.AllOps().size();
T
typhoonzero 已提交
333 334 335 336 337
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
  }
  return result;
}

D
dzhwinter 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
// void CheckResult(const std::string op_type, ExecutorPrepareContext* ctx, Scope* local_scope) {
//     VLOG(3) << "before checking result";
//   auto& dev_ctx = *platform::DeviceContextPool::Instance().Get(place_);
//   std::vector<std::string> outputs;
//   auto& block = ctx->prog_.Block(0);
//   bool found = false;
//   framework::OpDesc* myop = nullptr;
//   for(auto& op : block.AllOps()) {
//     if(op->Type() == "load_combine" || op->Type() == "fetch" || op->Type() == "feed") return;
//     if (op->Type() == op_type) {
//         found = true;
//         myop = op;
//         break;
//       }
//     }
//   }
//   if(!found) {
//     VLOG(3) << "not found op!";
//     return;
//   }
//     auto* op = myop;
//      VLOG(3) << "start op output" << op->Type();
//     for(auto var_name: op->OutputArgumentNames()) {
//       auto* var = local_scope->Var(var_name);
//       auto* var_desc = block.FindVar(var_name);
//       if (var_desc->Persistable()) continue;
//       auto* tensor = var->GetMutable<framework::LoDTensor>();
//       framework::Tensor check;
//       VLOG(3) << "before tensor copy";
//       framework::TensorCopy(*tensor, platform::CPUPlace(), dev_ctx, &check);
//       VLOG(3) << "after tensor copy";
//       float sum = .0;
//       for(size_t i=0; i < check.numel(); ++i) {
//           sum += check.data<float>()[i];
//       }
//       VLOG(3) << "op " << op->Type() << " output var " << var_name << " sum " << sum;
//   VLOG(3) << "after checking result";
// }

Y
Yu Yang 已提交
377
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
378 379
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
D
dzhwinter 已提交
380
  VLOG(3) << "RunPreparedContext inside";
Y
Yu Yang 已提交
381 382 383 384
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
385 386
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
387
  }
Y
Yu Yang 已提交
388

D
dzhwinter 已提交
389
  VLOG(3) << "Scope ptr " << local_scope;
Y
Yu Yang 已提交
390
  for (auto& op : ctx->ops_) {
391
    op->Run(*local_scope, place_);
D
dzhwinter 已提交
392
   // CheckResult(op->Type(), ctx, local_scope);
Y
Yu Yang 已提交
393 394 395 396 397
    if (FLAGS_benchmark) {
      VLOG(2) << "Memory used after operator " + op->Type() + " running: "
              << memory::memory_usage(place_);
    }
  }
398
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
D
dzhwinter 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450

  VLOG(3) << "start checking";
    auto& dev_ctx = *platform::DeviceContextPool::Instance().Get(place_);
  std::vector<std::string> outputs;
  auto& block = ctx->prog_.Block(0);

  for(auto& op : block.AllOps()) {
    if(op->Type() == "load_combine" || op->Type() == "fetch" || op->Type() == "feed") continue;
    // for(auto& real_op : ctx->ops_) {
    //   if(real_op->Type() == op->Type()) {
    //     VLOG(3) << real_op->Type() << " " <<place_ << " " << real_op->DebugStringEx(local_scope);
    //   }
    // }
     
     //VLOG(3) << "start op output" << op->Type();
        for(auto var_name: op->InputArgumentNames()) {
      auto* var = local_scope->Var(var_name);
      auto* var_desc = block.FindVar(var_name);
      if (var_desc->Persistable()) continue;
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      framework::Tensor check;
      VLOG(3) << "before tensor copy";
   
      framework::TensorCopy(*tensor, platform::CPUPlace(), dev_ctx, &check);
      
      VLOG(3) << "after tensor copy";
      float sum = .0;
      for(size_t i=0; i < check.numel(); ++i) {
          sum += check.data<float>()[i];
      }
      VLOG(3) << "op " << op->Type() << " input var " << var_name << " sum " << sum;
    }

    VLOG(3) << "op " << op->Type() << "input finished";
    for(auto var_name: op->OutputArgumentNames()) {
      auto* var = local_scope->Var(var_name);
      auto* var_desc = block.FindVar(var_name);
      if (var_desc->Persistable()) continue;
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      framework::Tensor check;
      VLOG(3) << "before tensor copy";
      if(op->Type() == "batch_norm" && platform::is_gpu_place(place_)) {
        VLOG(3) << "op " << op->Type() << " output var " << var_name << " " << tensor->numel();
        tensor->mutable_data<float>(place_);
         framework::TensorCopy(*tensor, platform::CPUPlace(), dev_ctx, &check);
      } else {
         framework::TensorCopy(*tensor, platform::CPUPlace(), dev_ctx, &check);
      }
      
      VLOG(3) << "after tensor copy";
      float sum = .0;
      for(size_t i=0; i < check.numel(); ++i) {
D
dzhwinter 已提交
451 452 453
        if(std::type_index(check.type()) == std::type_index(typeid(int64_t))) {
          sum += static_cast<float>(check.data<int64_t>()[i]);
        } else {
D
dzhwinter 已提交
454
          sum += check.data<float>()[i];
D
dzhwinter 已提交
455
        }
D
dzhwinter 已提交
456 457 458 459 460 461 462
      }
      VLOG(3) << "op " << op->Type() << " output var " << var_name << " sum " << sum;
    }
  }

  VLOG(3) << "after checking result";

Q
qiaolongfei 已提交
463
  if (local_scope != scope) {
Y
Yu Yang 已提交
464
    scope->DeleteScope(local_scope);
465
  } else {
Q
qiaolongfei 已提交
466 467 468 469 470
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
471 472
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
473 474
      scope->DropKids();
    }
Y
Yu Yang 已提交
475
  }
Q
qiaolongfei 已提交
476

Y
Yu Yang 已提交
477 478 479 480 481 482 483 484
  if (FLAGS_benchmark) {
    VLOG(2) << "-------------------------------------------------------";
    VLOG(2) << "Memory used after deleting local scope: "
            << memory::memory_usage(place_);
    VLOG(2) << "-------------------------------------------------------";
  }
}

485 486
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
487
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
488 489 490
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
491 492
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

493
  PADDLE_ENFORCE(
494
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
495 496
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
497
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
498 499
      "Program in the prepared context should has fetch_ops.");

500 501 502 503 504
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
505 506
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
507 508 509
    }
  }

W
Wu Yi 已提交
510
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
511 512 513 514 515 516

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
517
      *(*fetch_targets)[fetch_target_name] =
518 519 520 521 522
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

523 524 525 526 527 528 529 530 531 532 533
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(3) << "use_mkldnn=True";
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
534 535 536
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
537 538 539
#endif
}

Q
qijun 已提交
540 541
}  // namespace framework
}  // namespace paddle