grid_sampler_op.h 12.7 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/hostdevice.h"


namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
         typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;

using Array3 = Eigen::DSizes<int64_t, 3>;
using Array4 = Eigen::DSizes<int64_t, 4>;


template <typename T>
36
static inline bool isInBound(T x, T y, T x_max, T y_max) {
D
dengkaipeng 已提交
37 38 39 40 41 42 43
  if (x < 0 || x > x_max || y < 0 || y > y_max) {
    return false;
  }
  return true;
}

template <typename DeviceContext, typename T>
44
static void CalcGridLocations(const DeviceContext& ctx, const Tensor& grid,
D
dengkaipeng 已提交
45 46
    Tensor* x_w, Tensor* x_e, Tensor* y_n, Tensor* y_s,
    Tensor* d_w, Tensor* d_e, Tensor* d_n, Tensor* d_s) {
47
  auto& place = *ctx.eigen_device();
D
dengkaipeng 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  const int n = grid.dims()[0];
  const int h = grid.dims()[1];
  const int w = grid.dims()[2];
  const T x_max = static_cast<T> (w - 1);
  const T y_max = static_cast<T> (h - 1);

  // split grid with shape (n, h, w, 2) into (x, y) by the 3rd Dim
  Tensor grid_x, grid_y;
  T* grid_x_data = grid_x.mutable_data<T>({n, h, w}, ctx.GetPlace());
  T* grid_y_data = grid_y.mutable_data<T>({n, h, w}, ctx.GetPlace());
  const T* grid_data = grid.data<T>();
  for (int i = 0; i < n * h * w; i++) {
    grid_x_data[i] = grid_data[2 * i];
    grid_y_data[i] = grid_data[(2 * i) + 1];
  }

  Tensor ones;
  ones.mutable_data<T>({n, h, w}, ctx.GetPlace());
  auto ones_t = EigenTensor<T, 3>::From(ones).setConstant(1.0);

  // scale grid to [0, h-1/w-1]
  auto grid_x_t = EigenTensor<T, 3>::From(grid_x);
  auto grid_y_t = EigenTensor<T, 3>::From(grid_y);
  grid_x_t.device(place) = 0.5 * ((grid_x_t + ones_t) * x_max);
  grid_y_t.device(place) = 0.5 * ((grid_y_t + ones_t) * y_max);

74
  // calculate coords of 4 corner points
D
dengkaipeng 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87
  x_w->mutable_data<T>({n, h, w}, ctx.GetPlace());
  x_e->mutable_data<T>({n, h, w}, ctx.GetPlace());
  y_n->mutable_data<T>({n, h, w}, ctx.GetPlace());
  y_s->mutable_data<T>({n, h, w}, ctx.GetPlace());
  auto x_w_t = EigenTensor<T, 3>::From(*x_w);
  auto x_e_t = EigenTensor<T, 3>::From(*x_e);
  auto y_n_t = EigenTensor<T, 3>::From(*y_n);
  auto y_s_t = EigenTensor<T, 3>::From(*y_s);
  x_w_t.device(place) = grid_x_t.floor();
  x_e_t.device(place) = x_w_t + ones_t;
  y_n_t.device(place) = grid_y_t.floor();
  y_s_t.device(place) = y_n_t + ones_t;

88
  // calculate distances to 4 sides
D
dengkaipeng 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
  d_w->mutable_data<T>({n, h, w}, ctx.GetPlace());
  d_e->mutable_data<T>({n, h, w}, ctx.GetPlace());
  d_n->mutable_data<T>({n, h, w}, ctx.GetPlace());
  d_s->mutable_data<T>({n, h, w}, ctx.GetPlace());
  auto d_w_t = EigenTensor<T, 3>::From(*d_w);
  auto d_e_t = EigenTensor<T, 3>::From(*d_e);
  auto d_n_t = EigenTensor<T, 3>::From(*d_n);
  auto d_s_t = EigenTensor<T, 3>::From(*d_s);
  d_w_t.device(place) = grid_x_t - x_w_t;
  d_e_t.device(place) = x_e_t - grid_x_t;
  d_n_t.device(place) = grid_y_t - y_n_t;
  d_s_t.device(place) = y_s_t - grid_y_t;
}

template <typename T>
104
static void GetGridPointValue(const Tensor& input, Tensor* output,
D
dengkaipeng 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
                        const Tensor& x, const Tensor& y) {
  const int n = input.dims()[0];
  const int c = input.dims()[1];
  const int h = input.dims()[2];
  const int w = input.dims()[3];
  auto x_t = EigenTensor<T, 3>::From(x);
  auto y_t = EigenTensor<T, 3>::From(y);
  auto output_t = EigenTensor<T, 4>::From(*output).setConstant((T)0);
  auto input_t = EigenTensor<T, 4>::From(input);

  for (int i = 0; i < n; i++) {
    for (int k = 0; k < h; k++) {
      for (int l = 0; l < w; l++) {
        if (isInBound(x_t(i, k, l), y_t(i, k, l), (T)(w - 1), (T)(h - 1))) {
          for (int j = 0; j < c; j++) {
            output_t(i, j, k, l) = input_t(i, j, (int)round(y_t(i, k, l)), (int)round(x_t(i, k, l)));
          }
        }
      }
    }
  }
}

template <typename T>
129
static void GatherOutputGradToInputGrad(const Tensor& output_grad, Tensor* input_grad,
D
dengkaipeng 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    const Tensor& x, const Tensor& y, 
    const Tensor& d1, const Tensor& d2) {
  const int n = output_grad.dims()[0];
  const int c = output_grad.dims()[1];
  const int h = output_grad.dims()[2];
  const int w = output_grad.dims()[3];
  auto x_t = EigenTensor<T, 3>::From(x);
  auto y_t = EigenTensor<T, 3>::From(y);
  auto d1_t = EigenTensor<T, 3>::From(d1);
  auto d2_t = EigenTensor<T, 3>::From(d2);
  auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 4>::From(output_grad);

  for (int i = 0; i < n; i++) {
    for (int k = 0; k < h; k++) {
      for (int l = 0; l < w; l++) {
        if(isInBound(x_t(i, k, l), y_t(i, k, l), (T)(w - 1), (T)(h - 1))) {
          for (int j = 0; j < c; j++) {
            input_grad_t(i, j, (int) y_t(i, k, l), (int) x_t(i, k, l)) += 
                            output_grad_t(i, j, k ,l) * d1_t(i, k, l) * d2_t(i, k, l);
          }
        }
      }
    }
  }
}



template <typename DeviceContext, typename T>
class GridSampleOpKernel : public framework::OpKernel<T> {
  public:
    void Compute(const framework::ExecutionContext& ctx) const override {
      auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
      auto* input = ctx.Input<Tensor>("X");
      auto* grid = ctx.Input<Tensor>("Grid");

      const int n = input->dims()[0];
      const int c = input->dims()[1];
      const int h = input->dims()[2];
      const int w = input->dims()[3];

      // calc locations and distances of 4 corner points
      Tensor x_w, x_e, y_n, y_s;
      Tensor d_w, d_e, d_n, d_s;
175 176 177 178
      CalcGridLocations<DeviceContext, T>(ctx.template device_context<DeviceContext>(), 
                            *grid, 
                            &x_w, &x_e, &y_n, &y_s,
                            &d_w, &d_e, &d_n, &d_s);
D
dengkaipeng 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

      auto* output = ctx.Output<Tensor>("Output");
      output->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
      math::SetConstant<DeviceContext, T>()(
          ctx.template device_context<DeviceContext>(), output,
          static_cast<T>(0));

      // calc 4 corner points value
      Tensor v_wn, v_en, v_ws, v_es;
      v_wn.mutable_data<T>({n, c, h, w}, ctx.GetPlace());
      v_en.mutable_data<T>({n, c, h, w}, ctx.GetPlace());
      v_ws.mutable_data<T>({n, c, h, w}, ctx.GetPlace());
      v_es.mutable_data<T>({n, c, h, w}, ctx.GetPlace());
      GetGridPointValue<T>(*input, &v_wn, x_w, y_n);
      GetGridPointValue<T>(*input, &v_en, x_e, y_n);
      GetGridPointValue<T>(*input, &v_ws, x_w, y_s);
      GetGridPointValue<T>(*input, &v_es, x_e, y_s);

      auto d_w_t = EigenTensor<T, 3>::From(d_w);
      auto d_e_t = EigenTensor<T, 3>::From(d_e);
      auto d_n_t = EigenTensor<T, 3>::From(d_n);
      auto d_s_t = EigenTensor<T, 3>::From(d_s);
      auto d_w_scaled_t = d_w_t.reshape(Array4(n, 1, h, w)).broadcast(Array4(1, c, 1, 1));
      auto d_e_scaled_t = d_e_t.reshape(Array4(n, 1, h, w)).broadcast(Array4(1, c, 1, 1));
      auto d_n_scaled_t = d_n_t.reshape(Array4(n, 1, h, w)).broadcast(Array4(1, c, 1, 1));
      auto d_s_scaled_t = d_s_t.reshape(Array4(n, 1, h, w)).broadcast(Array4(1, c, 1, 1));
      auto v_wn_t = EigenTensor<T, 4>::From(v_wn);
      auto v_en_t = EigenTensor<T, 4>::From(v_en);
      auto v_ws_t = EigenTensor<T, 4>::From(v_ws);
      auto v_es_t = EigenTensor<T, 4>::From(v_es);
      auto output_t = EigenTensor<T, 4>::From(*output);
      //bilinear interpolaetion by 4 corner points
      output_t.device(place) = v_wn_t * d_e_scaled_t * d_s_scaled_t
                                + v_en_t * d_w_scaled_t * d_s_scaled_t
                                + v_ws_t * d_e_scaled_t * d_n_scaled_t
                                + v_es_t * d_w_scaled_t * d_n_scaled_t;
    }

};

template <typename DeviceContext, typename T>
class GridSampleGradOpKernel : public framework::OpKernel<T> {
  public:
    void Compute(const framework::ExecutionContext& ctx) const override {
      auto* input = ctx.Input<Tensor>("X");
      auto* grid = ctx.Input<Tensor>("Grid");
      auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));

      const int n = input->dims()[0];
      const int c = input->dims()[1];
      const int h = input->dims()[2];
      const int w = input->dims()[3];

      auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
      input_grad->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
      math::SetConstant<DeviceContext, T>()(
          ctx.template device_context<DeviceContext>(), input_grad,
          static_cast<T>(0));
      auto* grid_grad = ctx.Output<Tensor>(framework::GradVarName("Grid"));
      grid_grad->mutable_data<T>({n, h, w, 2}, ctx.GetPlace());
      math::SetConstant<DeviceContext, T>()(
          ctx.template device_context<DeviceContext>(), grid_grad,
          static_cast<T>(0));
      
      Tensor x_w, x_e, y_n, y_s;
      Tensor d_w, d_e, d_n, d_s;
245 246 247 248
      CalcGridLocations<DeviceContext, T>(ctx.template device_context<DeviceContext>(), 
                            *grid, 
                            &x_w, &x_e, &y_n, &y_s,
                            &d_w, &d_e, &d_n, &d_s);
D
dengkaipeng 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

      // gather output grad value to input grad by corner point coords and weight
      GatherOutputGradToInputGrad<T>(*output_grad, input_grad, x_w, y_n, d_e, d_s);
      GatherOutputGradToInputGrad<T>(*output_grad, input_grad, x_w, y_s, d_e, d_n);
      GatherOutputGradToInputGrad<T>(*output_grad, input_grad, x_e, y_n, d_w, d_s);
      GatherOutputGradToInputGrad<T>(*output_grad, input_grad, x_e, y_s, d_w, d_n);

      // calc 4 corner points value
      Tensor v_wn, v_en, v_ws, v_es;
      v_wn.mutable_data<T>({n, c, h, w}, ctx.GetPlace());
      v_en.mutable_data<T>({n, c, h, w}, ctx.GetPlace());
      v_ws.mutable_data<T>({n, c, h, w}, ctx.GetPlace());
      v_es.mutable_data<T>({n, c, h, w}, ctx.GetPlace());
      GetGridPointValue<T>(*input, &v_wn, x_w, y_n);
      GetGridPointValue<T>(*input, &v_en, x_e, y_n);
      GetGridPointValue<T>(*input, &v_ws, x_w, y_s);
      GetGridPointValue<T>(*input, &v_es, x_e, y_s);
      auto v_wn_t = EigenTensor<T, 4>::From(v_wn);
      auto v_en_t = EigenTensor<T, 4>::From(v_en);
      auto v_ws_t = EigenTensor<T, 4>::From(v_ws);
      auto v_es_t = EigenTensor<T, 4>::From(v_es);

      auto d_w_t = EigenTensor<T, 3>::From(d_w);
      auto d_e_t = EigenTensor<T, 3>::From(d_e);
      auto d_n_t = EigenTensor<T, 3>::From(d_n);
      auto d_s_t = EigenTensor<T, 3>::From(d_s);

      auto output_grad_t = EigenTensor<T, 4>::From(*output_grad);

      Tensor grid_grad_x, grid_grad_y;
      grid_grad_x.mutable_data<T>({n, h, w}, ctx.GetPlace());
      grid_grad_y.mutable_data<T>({n, h, w}, ctx.GetPlace());
      auto grid_grad_x_t = EigenTensor<T, 3>::From(grid_grad_x).setConstant(0.0);
      auto grid_grad_y_t = EigenTensor<T, 3>::From(grid_grad_y).setConstant(0.0);
      for (int i = 0; i < n; i++) {
        for(int j = 0; j < c; j++) {
          for(int k = 0; k < h; k++) {
            for(int l = 0; l < w; l++) {
              grid_grad_x_t(i, k, l) += ((v_en_t(i, j, k, l) - v_wn_t(i, j, k, l)) * d_s_t(i, k, l)
                                    + (v_es_t(i, j, k, l) - v_ws_t(i, j, k, l)) * d_n_t(i, k, l))
                                    * output_grad_t(i, j, k, l);
              grid_grad_y_t(i, k, l) += ((v_ws_t(i, j, k, l) - v_wn_t(i, j, k, l)) * d_e_t(i, k, l)
                                    + (v_es_t(i, j, k, l) - v_en_t(i, j, k, l)) * d_w_t(i, k, l))
                                    * output_grad_t(i, j, k, l);
            }
          }
        }
      }
      const T x_max = static_cast<T>(w - 1);
      const T y_max = static_cast<T>(h - 1);
      grid_grad_x_t = grid_grad_x_t * (x_max / (T)2);
      grid_grad_y_t = grid_grad_y_t * (y_max / (T)2);
      
      // gather grid_grad [x, y] in 3rd Dim
      T* grid_grad_data = grid_grad->data<T>();
      T* grid_grad_x_data = grid_grad_x.data<T>();
      T* grid_grad_y_data = grid_grad_y.data<T>();
      for (int i = 0; i < n * h * w; i++) {
        grid_grad_data[2 * i] = grid_grad_x_data[i];
        grid_grad_data[2 * i + 1] = grid_grad_y_data[i];
      }
    }

};

} // namespace operators
} // namespace paddle