primx.py 21.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.fluid import framework as framework
from paddle.fluid.framework import default_main_program
from paddle.fluid.framework import Operator
from paddle import compat as cpt
from .primops import fill_const, add
from .primreg import op_position_inputs, op_position_output, lookup_orig2prim, lookup_prim2orig
from .primrules import _orig2prim, _prim2orig, _jvp, _transpose
from .utils import get_input_var_list, get_output_var_list, to_tensors, flatten, flatten_and_remove_none
from collections import OrderedDict


def topo_path(xs, ys, block=None):
    """ Returns the list of ops on the path from `xs` to `ys` in topological 
    order.
    
    TODO(Tongxin): supporting control flow and nested blocks.
    Args:
        xs: a list|tuple of vars as source
        ys: a list|tuple of vars as sink
        block: the program block containing the path, optional
    Returns:
        (path, unused_xs, unreached_ys): a tuple comprised of the resulting op
        path, the unused variables in `xs`, and the unreached variables in `ys`
    """

    if block is None:
        block = default_main_program().current_block()

    path = []
    backpath = []
    reached_vars = OrderedDict()
    used_vars = OrderedDict()

    # Initialize reached vars
    for x in xs:
        assert x is None or x.block == block, f'x is not None and x.block != block'
        reached_vars[id(x)] = x

    # Reaching test, returning whether an op is reached from the given input
    reaching = lambda op: any(id(v) in reached_vars for v in flatten_and_remove_none(get_input_var_list(op)))

    # block.ops are supposedly in the order that preserves correct data
    # dependence.
    # Forward pass to identify all reached variables and ops
    for op in block.ops:
        if reaching(op):
            path.append(op)
            for var in flatten_and_remove_none(get_output_var_list(op)):
                reached_vars[id(var)] = var

    used_vars = OrderedDict((id(y), y) for y in ys if id(y) in reached_vars)
    back_reaching = lambda op: any(id(out) in used_vars for out in flatten_and_remove_none(get_output_var_list(op)))

    # Backward pass to find all used variables
    for op in reversed(path):
        if back_reaching(op):
            backpath.append(op)
            for var in flatten_and_remove_none(get_input_var_list(op)):
                used_vars[id(var)] = var

    unused_xs = [x for x in xs if id(x) not in used_vars]
    unreached_ys = [y for y in ys if id(y) not in reached_vars]

    return list(reversed(backpath)), unused_xs, unreached_ys


def output_vars_on_path(path):
    """ Returns the output variables of all the ops on the path from `xs`
    to `ys`.
    
    Args:
        path: a list of ops on which to find the output variables

    Returns:
        vars: the output vars
    """
    vars = OrderedDict()
    for op in path:
        for out in flatten_and_remove_none(get_output_var_list(op)):
            vars[id(out)] = out

    return vars


class VarMap(object):
    """ A general map data structure for linking variables to variables.
    
    An example is linking variables to their gradients.
    """

    __slots__ = ['name', 'varset', 'tab']

    def __init__(self, name, varset):
        self.name = name
        self.varset = varset
        self.tab = OrderedDict()

    def add(self, key_var, value_var):
        self.tab[id(key_var)] = id(value_var)

    def add_rec(self, key_vars, value_vars):
        if value_vars is None:
            return
        if isinstance(key_vars, paddle.fluid.framework.Variable):
            if not isinstance(value_vars, paddle.fluid.framework.Variable):
                raise TypeError(
                    f'value_vars must be Variable, but got {type(value_vars)}')
            self.tab[id(key_vars)] = id(value_vars)
        else:
            assert len(key_vars) == len(value_vars), (
                f'len(key_vars) shoule be equal to len(value_vars), '
                f'but len(key_vars)={len(key_vars)} and len(value_vars)={len(value_vars)}.'
            )
            for key_var, value_var in zip(key_vars, value_vars):
                self.add_rec(key_var, value_var)

    def lookup(self, key_var):
        value_id = self.tab.get(id(key_var))
        if value_id is not None:
            return self.varset.get(value_id)
        else:
            return None

    def delete(self, key_var):
        varid = id(key_var)
        if varid in self.tab:
            del self.tab[id(key_var)]

    def delete_keyvars(self, key_vars):
        for var in key_vars:
            varid = id(var)
            if varid in self.tab:
                del self.tab[varid]

    def delete_valuevars(self, value_vars):
        ids = [id(v) for v in value_vars]
        keys = [k for k, v in self.tab.items() if v in ids]
        for k in keys:
            del self.tab[k]

    def contain_var(self, key_var):
        return self.tab.__contains__(id(key_var))

    def contain_value(self, value_var):
        return id(value_var) in self.tab.values()


class Transform(object):
    """ An object that maintains the state of transformations applied to a 
    primitve program. """

    def __init__(self, block):
        self.block = block
        self.vars = self.init_vars(block)
        self.var2dot = VarMap('var2dot', self.vars)
        self.dot2bar = VarMap('dot2var', self.vars)

    def init_vars(self, block):
        vars = OrderedDict()
        for _, var in block.vars.items():
            vars[id(var)] = var
        return vars

    def add_vars(self, new_vars):
        self.vars.update({id(v): v for v in new_vars if v is not None})

    def add_vars_rec(self, new_vars):
        if new_vars is None:
            return
        if isinstance(new_vars, paddle.fluid.framework.Variable):
            self.vars.update({id(new_vars): new_vars})
            return
        if not isinstance(new_vars, list):
            raise TypeError(f'new_vars must be list, but got {type(new_vars)}')
        for var in new_vars:
            self.add_vars_rec(var)

    def erase_ops(self, ordered_indexes):
        block = self.block
        for op_index in reversed(ordered_indexes):
            block.desc._remove_op(op_index, op_index + 1)

        # remove from block.ops
        for op_index in reversed(ordered_indexes):
            del block.ops[op_index]

        block._sync_with_cpp()

    def erase_dots(self, vars_to_erase):
        for var in vars_to_erase:
            if id(var) in self.vars:
                del self.vars[id(var)]
        self.dot2bar.delete_keyvars(vars_to_erase)
        self.var2dot.delete_valuevars(vars_to_erase)
        block = self.block
        for var in vars_to_erase:
            name = var.name
            block.desc._remove_var(cpt.to_bytes(name))
            del block.vars[name]
        block._sync_with_cpp()

    def var2dot_rec(self, vars):
        """ Lookup var2dot recursively."""
        if isinstance(vars, paddle.fluid.framework.Variable):
            dot = self.var2dot.lookup(vars)
            return dot

        dots = [self.var2dot_rec(var) for var in vars]
        return dots

    def dot2bar_rec(self, dots):

        if isinstance(dots, paddle.fluid.framework.Variable):
            bar = self.dot2bar.lookup(dots)
            assert bar is not None, 'bar must be not None'
            return bar

        bars = [self.dot2bar_rec(dot) for dot in dots]
        return bars

    def linearize(self, xs, ys, xs_dot=None):
        """ Performs the linearization transform, a.k.a, forward mode AD 
        transform, on a primitive lowered program.
        
        Args:
            xs: a list of input variables
            ys: a list of output variables
            xs_dot: optional, a list of gradient input variables. The list size
                must be equal to `len(xs)`. The shape and dtype of each element
                must be the same as in `xs`

        Returns:
            (xs_dot, ys_dot): a tuple of two lists. `xs_dot` is the list of
            gradient inputs of the resulting linearized program. `ys_dot` is 
            the list gradient outputs of the resulting linearized program
            
        """
        if xs_dot is None:
            xs_dot = [fill_const(1.0, shape=x.shape, dtype=x.dtype) for x in xs]
            self.add_vars(xs_dot)
        else:
            assert len(xs) == len(xs_dot), (
                f'len(xs) should be equal to len(xs_dot), '
                f'but len(xs)={len(xs)} and len(xs_dot)={len(xs_dot)}')

        for x, dot in zip(xs, xs_dot):
            assert x.dtype == dot.dtype, (
                f'x.dtype should be equal to dot.dtype, '
                f'but x.dtype={x.dtype} and dot.dtype={dot.dtype}')
            assert x.shape == dot.shape, (
                f'x.shape should be equal to dot.shape, '
                f'but x.shape={x.shape} and dot.shape={dot.shape}')
            self.var2dot.add(x, dot)

        path, unused_xs, _ = topo_path(xs, ys, self.block)

        # No need to track unused inputs
        for x in unused_xs:
            self.var2dot.delete(x)

        for op in path:
            # An input var may not be on the input-output path, which implies 
            # there may be None's in `ins_dot`. In this case we place
            # the original input in the position of the otherwise forward
            # gradient.
            ins = op_position_inputs(op)
            jvp_ins = self.var2dot_rec(ins)
            # apply op's forward ad rule
            outs_dot = _jvp(op, *jvp_ins)
            self.add_vars_rec(outs_dot)
            outs = op_position_output(op)
            self.var2dot.add_rec(outs, outs_dot)

        ys_dot = [self.var2dot.lookup(y) for y in ys]
        return xs_dot, ys_dot

    def transpose(self, ys_dot, xs_dot, ys_bar=None, retain_fwd=False):
        """ Performs the transpose transform, a.k.a, reverse mode AD 
        transform, on a linearized primitive program.

        Note, `transpose` is supposed to be used in couple with `linearize`.
        
        Args:
            ys_dot: a list of outputs of the linearized program.
            xs_dot: a list of inputs of the linearized program.
            ys_bar: optional, a list of inputs of the resulting transposed 
                program. The list size must be equal to `len(ys_dot)`. The shape
                and dtype of each element must be the same as in `ys_dot`

        Returns:
            (ys_bar, xs_bar): a tuple of two lists. `ys_bar` is the list of
            inputs of the resulting transposed program. `xs_bar` is 
            the list outputs of the resulting transposed program
            
        """
        assert all(v is not None for v in xs_dot), f'`xs_dot` includes None.'
        assert all(v is not None for v in ys_dot), f'`ys_dot` includes None.'

        if ys_bar is None:
            ys_bar = []
            for y in ys_dot:
                ys_bar.append(fill_const(1.0, shape=y.shape, dtype=y.dtype))
            self.add_vars(ys_bar)
        else:
            assert len(ys_dot) == len(ys_bar), (
                f'len(ys_dot) should be equal to len(ys_bar), '
                f'but len(ys_dot)={len(ys_dot)} and len(ys_bar)={len(ys_bar)}')
            for y_dot, y_bar in zip(ys_dot, ys_bar):
                assert y_dot.shape == y_bar.shape, (
                    f'y_dot.shape should be equal to y_bar.shape, '
                    f'but y_dot.shape={y_dot.shape} and y_bar.shape={y_bar.shape}'
                )
                assert y_dot.dtype == y_bar.dtype, (
                    f'y_dot.dtype should be equal to y_bar.dtype, '
                    f'but y_dot.dtype={y_dot.dtype} and y_bar.dtype={y_bar.dtype}'
                )

        for dot, bar in zip(ys_dot, ys_bar):
            self.dot2bar.add(dot, bar)

        # find all the relevant forward gradients
        path, unused_xs_dot, _ = topo_path(xs_dot, ys_dot, self.block)

        # No need to track unused inputs
        for dot in unused_xs_dot:
            self.dot2bar.delete(dot)

        dotvars = output_vars_on_path(path)
        dotvars.update((id(var), var) for var in xs_dot)

        is_dot = lambda v: id(v) in dotvars

        for op in reversed(path):
            out = op_position_output(op)
            out_bar_rec = self.dot2bar_rec(out)
            ins_bar_rec = _transpose(op, is_dot, out_bar_rec)

            # TODO(Tongxin): this is hacky. Tuple implies the Transpose rule
            # returns multiple entities. There should be better ways to handle
            # outputs.
            if isinstance(ins_bar_rec, tuple):
                ins_bar_rec = list(ins_bar_rec)
            else:
                ins_bar_rec = [ins_bar_rec]
            self.add_vars_rec(ins_bar_rec)

            ins_bar = flatten(ins_bar_rec)
            ins = flatten(op_position_inputs(op))
            assert len(ins) == len(ins_bar), (
                f'len(ins) should be equal to len(ins_bar), '
                f'but len(ins)={len(ins)} and len(ins_bar)={len(ins_bar)}')

            for dot, bar in zip(ins, ins_bar):
                if bar is not None:
                    # aggregate gradient
                    grad = self.dot2bar.lookup(dot)
                    if grad is None:
                        self.dot2bar.add(dot, bar)
                    else:
                        grad = add(grad, bar)
                        self.add_vars([grad])
                        self.dot2bar.add(dot, grad)

        xs_bar = [self.dot2bar.lookup(x) for x in xs_dot]

        if not retain_fwd and len(path) > 0:
            vars_to_remove = set()
            for op in path:
                vars_to_remove.update(
                    flatten_and_remove_none(get_output_var_list(op)))

            op_indexes = []

            block = self.block
            for i, op in enumerate(block.ops):
                if op in path:
                    op_indexes.append(i)
                    path.pop(0)
                    if len(path) == 0:
                        break

            self.erase_ops(op_indexes)
            self.erase_dots(vars_to_remove)

        return ys_bar, xs_bar


def _lower(block, reverse):
    # Some functions which are only used in _lower.
    def bind(args, to_bind, value_table):
        for i in range(len(args)):
            if isinstance(args[i], list):
                bind(args[i], to_bind, value_table)
            elif args[i] is not None and args[i].name in to_bind:
                args[i] = value_table[to_bind[args[i].name]]

    def bind_name(names, to_bind):
        return_list = []
        for name in names:
            if isinstance(name, list):
                return_list.append(bind_name(name, to_bind))
            else:
                return_list.append(to_bind[name] if name in to_bind else name)
        return return_list

    def expand_nested_list(xs):
        return_list = []
        for x in xs:
            if isinstance(x, list):
                return_list = return_list + expand_nested_list(x)
            else:
                return_list.append(x)
        return return_list

    # Step1: Do some preparatory work for lower
    lower_fn = _prim2orig if reverse else _orig2prim
    lookup_fn = lookup_prim2orig if reverse else lookup_orig2prim
    if block is None:
        program = default_main_program()
        assert program.num_blocks == 1, "The lower transform is designed to process only one block."
        block = program.current_block()

    value_table = {}
    to_bind = {}
    to_bind_rev = {}
    for var in block.desc.all_vars():
        value_table[var.name()] = block.var(var.name())

    ops_to_remove = []
    vars_to_remove = set()

    # Step2: Process all ops in the target block
    for op_idx in range(len(block.ops)):
        op = block.ops[op_idx]
        ops_to_remove.append(op_idx)
        if lookup_fn(op.type) is not None:
            input_args = get_input_var_list(op)
            bind(input_args, to_bind, value_table)

            for orig_out, new_out in zip(
                    expand_nested_list(get_output_var_list(op)),
                    expand_nested_list(to_tensors(lower_fn(op, *input_args)))):
                assert not (orig_out is None) ^ (
                    new_out is None), "orig_out and new_out should match."
                vars_to_remove.add(new_out.name)
                value_table[new_out.name] = new_out
                to_bind[orig_out.name] = new_out.name
                to_bind_rev[new_out.name] = orig_out.name
        else:
            inputs = {}
            for i in range(len(op.input_names)):
                inputs[op.input_names[i]] = bind_name(
                    op.input(op.input_names[i]), to_bind)

            outputs = {}
            for i in range(len(op.output_names)):
                outputs[op.output_names[i]] = op.output(op.output_names[i])

            attrs = {}
            for name in sorted(op.attr_names):
                attrs[name] = op.attr(name)
            from paddle.fluid.dygraph.base import param_guard
            new_op_desc = block.desc.append_op()
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=block,
                    desc=new_op_desc,
                    type=op.type,
                    inputs=inputs,
                    outputs=outputs,
                    attrs=attrs)
            block.ops.append(op)

    # Step3: Do some post-processing work
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)
        del block.ops[op_idx]
    block._sync_with_cpp()

    for op_idx in range(len(block.ops)):
        op = block.ops[op_idx]
        for in_name in op.input_arg_names:
            if in_name in to_bind_rev:
                op._rename_input(in_name, to_bind_rev[in_name])

        for out_name in op.output_arg_names:
            if out_name in to_bind_rev:
                op._rename_output(out_name, to_bind_rev[out_name])

    for var_name in sorted(vars_to_remove):
        assert var_name in to_bind_rev, 'var_name "{}" is not in to_bind_rev.'.format(
            var_name)
        if var_name != to_bind_rev[var_name]:
            block.desc._remove_var(cpt.to_bytes(var_name))
            del block.vars[var_name]
    block._sync_with_cpp()


@framework.static_only
def orig2prim(block=None):
    """ 
    .. note::
        **This API is ONLY available in the static mode.**

    All operators in the target block are processed as follows.
    If it is an original operator, it will be transformed into
    one or a series of automatic differential basic operators with
    equivalent function.
    
    Args:
        block(paddle.fluid.framework.Variable|None, optional): The
            target block to process on. Default None, and will
            process on the current block of main program.
    
    Returns:
        None
    """
    _lower(block, reverse=False)


@framework.static_only
def prim2orig(block=None):
    """
    .. note::
        **ONLY available in the static mode.**

    All operators in the target block are processed as follows.
    If it is an automatic differential basic operator, it will be
    transformed into one or a series of original operators with
    equivalent function to support execution.
    
    Args:
        block(paddle.static.Variable|None, optional): The
            target block to process on. Default None, and will
            process on the current block of main program.
       
    Examples:

        .. code-block:: python

            import paddle
            from paddle.incubate.autograd import enable_prim, prim_enabled, prim2orig
            
            paddle.enable_static()
            enable_prim()
            
            x = paddle.ones(shape=[2, 2], dtype='float32')
            x.stop_gradients = False
            y = x * x
            dy_dx = paddle.static.gradients(y, x)
            if prim_enabled():
                prim2orig()
    """
    _lower(block, reverse=True)


def _gradients(ys, xs, ys_bar=None):
    """ A drop-in replacement of paddle.gradients but instead computing
    on primitive ops.
    
    Args:
        ys: the target tensor or tensors
        xs: the input tensor or tensors
        ys_bar: the optional gradient tensors of `ys`
    
    Returns:
        xs_bar: a list gradients of input `xs`
    """

    ys, xs = to_tensors(ys), to_tensors(xs)
    block = ys[0].block
    # TODO(Tongxin) without any prior knowledge about whether the program
    # is completely lowered to primitive ops, it's mandatory to run the lowering
    # pass once and again. This is obviously inefficient and needs to be 
    # optimized.
    orig2prim(block)

    ad = Transform(block)

    xs_dot, ys_dot = ad.linearize(xs, ys)
    if any(var is None for var in ys_dot):
        assert False, f'Gradients cannot be computed. The given output `ys` does not depend on input `xs`.'
    ys_bar, xs_bar = ad.transpose(ys_dot, xs_dot, ys_bar)
    # remove xs_dot and their constructor ops

    op_indexes = []
    for var in xs_dot:
        if var is not None:
            op_index = block.ops.index(var.op)
            assert op_index >= 0, f'op_index should be greater than or equal to 0, but op_index={op_index}.'
            op_indexes.append(op_index)

    ad.erase_ops(sorted(op_indexes))
    ad.erase_dots(xs_dot)

    return xs_bar