mixed_vector.h 14.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14 15 16

#pragma once

17
#include <algorithm>
D
dzhwinter 已提交
18
#include <initializer_list>
19
#include <memory>
Y
Yu Yang 已提交
20
#include <mutex>  // NOLINT
21
#include <utility>
D
dzhwinter 已提交
22
#include <vector>
W
wanghuancoder 已提交
23 24

#include "glog/logging.h"
25
#include "paddle/fluid/framework/details/cow_ptr.h"
Y
Yi Wang 已提交
26 27
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
28
#include "paddle/fluid/memory/malloc.h"
29
#include "paddle/fluid/memory/memcpy.h"
Y
Yu Yang 已提交
30

D
dzhwinter 已提交
31 32 33
namespace paddle {
namespace framework {

34
#if defined(PADDLE_WITH_CUDA)
Y
Yu Yang 已提交
35 36
// Vector<T> implements the std::vector interface, and can get Data or
// MutableData from any place. The data will be synced implicitly inside.
D
dzhwinter 已提交
37
template <typename T>
Y
Yu Yang 已提交
38
class Vector {
D
dzhwinter 已提交
39
 public:
Y
Yu Yang 已提交
40
  using value_type = T;
41 42
  using iterator = typename std::vector<T>::iterator;
  using const_iterator = typename std::vector<T>::const_iterator;
C
chengduoZH 已提交
43

44 45 46 47 48 49 50 51 52 53 54
 private:
  // The actual class to implement vector logic
  class VectorData {
   public:
    VectorData() : flag_(kDataInCPU) {}
    VectorData(size_t count, const T &value)
        : cpu_(count, value), flag_(kDataInCPU) {}
    VectorData(std::initializer_list<T> init) : cpu_(init), flag_(kDataInCPU) {}
    template <typename U>
    explicit VectorData(const std::vector<U> &dat)
        : cpu_(dat), flag_(kDataInCPU) {}
Y
Yu Yang 已提交
55
    ~VectorData() {}
56 57 58 59 60 61

    VectorData(const VectorData &o) {
      o.ImmutableCPU();
      cpu_ = o.cpu_;
      flag_ = kDataInCPU;
    }
C
chengduoZH 已提交
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    VectorData &operator=(const VectorData &o) {
      o.ImmutableCPU();
      cpu_ = o.cpu_;
      flag_ = kDataInCPU;
      return *this;
    }

    T &operator[](size_t i) {
      MutableCPU();
      return cpu_[i];
    }

    const T &operator[](size_t i) const {
      ImmutableCPU();
      return cpu_[i];
    }

    size_t size() const { return cpu_.size(); }

    iterator begin() {
      MutableCPU();
      return cpu_.begin();
    }

    iterator end() {
      MutableCPU();
      return cpu_.end();
    }

    T &front() {
      MutableCPU();
      return cpu_.front();
    }

    T &back() {
      MutableCPU();
      return cpu_.back();
    }

    const_iterator begin() const {
      ImmutableCPU();
      return cpu_.begin();
    }

    const_iterator end() const {
      ImmutableCPU();
      return cpu_.end();
    }

    const T &back() const {
      ImmutableCPU();
      return cpu_.back();
    }

    T *data() { return &(*this)[0]; }

    const T *data() const { return &(*this)[0]; }

    const T &front() const {
      ImmutableCPU();
      return cpu_.front();
    }

    // assign this from iterator.
    // NOTE: the iterator must support `end-begin`
    template <typename Iter>
    void assign(Iter begin, Iter end) {
      MutableCPU();
      cpu_.assign(begin, end);
    }

    // push_back. If the previous capacity is not enough, the memory will
    // double.
    void push_back(T elem) {
      MutableCPU();
      cpu_.push_back(elem);
    }

    // extend a vector by iterator.
    // NOTE: the iterator must support end-begin
    template <typename It>
    void Extend(It begin, It end) {
      MutableCPU();
      auto out_it = std::back_inserter<std::vector<T>>(this->cpu_);
      std::copy(begin, end, out_it);
    }

    // resize the vector
    void resize(size_t size) {
      MutableCPU();
      cpu_.resize(size);
    }

    // get cuda ptr. immutable
    const T *CUDAData(platform::Place place) const {
158 159 160 161
      PADDLE_ENFORCE_EQ(
          platform::is_gpu_place(place), true,
          platform::errors::Unavailable(
              "Place mismatch, CUDA Data must be on CUDA place."));
162
      ImmutableCUDA(place);
163
      return reinterpret_cast<T *>(gpu_->ptr());
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    }

    // get cuda ptr. mutable
    T *CUDAMutableData(platform::Place place) {
      const T *ptr = CUDAData(place);
      flag_ = kDirty | kDataInCUDA;
      return const_cast<T *>(ptr);
    }

    // clear
    void clear() {
      cpu_.clear();
      flag_ = kDirty | kDataInCPU;
    }

    size_t capacity() const { return cpu_.capacity(); }

    // reserve data
Y
Yu Yang 已提交
182
    void reserve(size_t size) const { cpu_.reserve(size); }
183 184 185 186 187 188 189 190 191 192 193 194 195

    // implicit cast operator. Vector can be cast to std::vector implicitly.
    operator std::vector<T>() const {
      ImmutableCPU();
      return cpu_;
    }

    bool operator==(const VectorData &other) const {
      ImmutableCPU();
      other.ImmutableCPU();
      return cpu_ == other.cpu_;
    }

Y
Yu Yang 已提交
196 197
    std::mutex &Mutex() const { return mtx_; }

198 199 200 201
    boost::optional<platform::CUDAPlace> CUDAPlace() const {
      return gpu_ == nullptr
                 ? boost::none
                 : boost::optional<platform::CUDAPlace>(
202
                       BOOST_GET_CONST(platform::CUDAPlace, gpu_->place()));
Y
Yu Yang 已提交
203 204
    }

205 206 207 208 209 210 211 212 213 214
   private:
    enum DataFlag {
      kDataInCPU = 0x01,
      kDataInCUDA = 0x02,
      // kDirty means the data has been changed in one device.
      kDirty = 0x10
    };

    void CopyToCPU() const {
      // COPY GPU Data To CPU
Y
Yu Yang 已提交
215
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
216
          platform::DeviceContextPool::Instance().Get(gpu_->place()));
Y
Yu Yang 已提交
217
      auto stream = dev_ctx->stream();
218
      void *src = gpu_->ptr();
219
      void *dst = cpu_.data();
P
peizhilin 已提交
220
      paddle::memory::Copy(platform::CPUPlace(), dst, CUDAPlace().get(), src,
221
                           gpu_memory_size_, stream);
Y
Yu Yang 已提交
222
      dev_ctx->Wait();
223 224 225 226 227
    }

    void MutableCPU() {
      if (IsInCUDA() && IsDirty()) {
        CopyToCPU();
228
      }
229
      flag_ = kDirty | kDataInCPU;
230
    }
C
chengduoZH 已提交
231

232 233 234 235 236 237
    void ImmutableCUDA(platform::Place place) const {
      if (IsDirty()) {
        if (IsInCPU()) {
          CopyCPUDataToCUDA(place);
          UnsetFlag(kDirty);
          SetFlag(kDataInCUDA);
238
        } else if (IsInCUDA() && !(place == gpu_->place())) {
239 240
          PADDLE_THROW(
              platform::errors::Unavailable("Unexpected data place mismatch."));
241 242 243 244 245 246 247 248 249 250
          // Still dirty
        } else {
          // Dirty && DataInCUDA && Device is same
          // Do nothing
        }
      } else {
        if (!IsInCUDA()) {
          // Even data is not dirty. However, data is not in CUDA. Copy data.
          CopyCPUDataToCUDA(place);
          SetFlag(kDataInCUDA);
251
        } else if (!(place == gpu_->place())) {
252 253
          PADDLE_THROW(
              platform::errors::Unavailable("Unexpected data place mismatch."));
254 255 256 257 258
        } else {
          // Not Dirty && DataInCUDA && Device is same
          // Do nothing.
        }
      }
259
    }
260 261 262

    void CopyCPUDataToCUDA(const platform::Place &place) const {
      void *src = cpu_.data();
263 264
      gpu_memory_size_ = cpu_.size() * sizeof(T);
      gpu_ = memory::Alloc(place, gpu_memory_size_);
265
      void *dst = gpu_->ptr();
Y
Yu Yang 已提交
266 267 268
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          platform::DeviceContextPool::Instance().Get(place));
      auto stream = dev_ctx->stream();
P
peizhilin 已提交
269
      paddle::memory::Copy(CUDAPlace().get(), dst, platform::CPUPlace(), src,
270
                           gpu_memory_size_, stream);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    }

    void ImmutableCPU() const {
      if (IsDirty() && !IsInCPU()) {  // If data has been changed in CUDA, or
                                      // CPU has no data.
        CopyToCPU();
        UnsetFlag(kDirty);
      }
      SetFlag(kDataInCPU);
    }

    void UnsetFlag(int flag) const { flag_ &= ~flag; }
    void SetFlag(int flag) const { flag_ |= flag; }

    bool IsDirty() const { return flag_ & kDirty; }

    bool IsInCUDA() const { return flag_ & kDataInCUDA; }

    bool IsInCPU() const { return flag_ & kDataInCPU; }

    mutable std::vector<T> cpu_;
P
peizhilin 已提交
292
    mutable paddle::memory::AllocationPtr gpu_;
293
    mutable size_t gpu_memory_size_{0};
294
    mutable int flag_;
Y
Yu Yang 已提交
295 296

    mutable std::mutex mtx_;
297 298 299 300 301 302 303 304 305 306 307 308
  };

 public:
  // Default ctor. Create empty Vector
  Vector() : m_(new VectorData()) {}

  // Fill vector with value. The vector size is `count`.
  explicit Vector(size_t count, const T &value = T())
      : m_(new VectorData(count, value)) {}

  // Ctor with init_list
  Vector(std::initializer_list<T> init) : m_(new VectorData(init)) {}
Y
Yu Yang 已提交
309

Y
Yu Yang 已提交
310
  // implicit cast from std::vector.
Y
Yu Yang 已提交
311
  template <typename U>
312
  Vector(const std::vector<U> &dat) : m_(new VectorData(dat)) {  // NOLINT
Y
Yu Yang 已提交
313 314
  }

Y
Yu Yang 已提交
315
  // Copy ctor
316
  Vector(const Vector<T> &other) { m_ = other.m_; }
Y
Yu Yang 已提交
317

Y
Yu Yang 已提交
318
  // Copy operator
319
  Vector<T> &operator=(const Vector<T> &other) {
320
    m_ = other.m_;
Y
Yu Yang 已提交
321 322 323
    return *this;
  }

Y
Yu Yang 已提交
324
  // Move ctor
325
  Vector(Vector<T> &&other) { m_ = std::move(other.m_); }
D
dzhwinter 已提交
326

Y
Yu Yang 已提交
327
  // CPU data access method. Mutable.
Y
Yu Yang 已提交
328
  T &operator[](size_t i) { return (*m_.MutableData())[i]; }
Y
Yu Yang 已提交
329

Y
Yu Yang 已提交
330
  // CPU data access method. Immutable.
Y
Yu Yang 已提交
331
  const T &operator[](size_t i) const { return m_.Data()[i]; }
Y
Yu Yang 已提交
332

Y
Yu Yang 已提交
333
  // std::vector iterator methods. Based on CPU data access method
Y
Yu Yang 已提交
334
  size_t size() const { return m_.Data().size(); }
Y
Yu Yang 已提交
335

Y
Yu Yang 已提交
336
  iterator begin() { return m_.MutableData()->begin(); }
Y
Yu Yang 已提交
337

Y
Yu Yang 已提交
338
  iterator end() { return m_.MutableData()->end(); }
Y
Yu Yang 已提交
339

Y
Yu Yang 已提交
340
  T &front() { return m_.MutableData()->front(); }
Y
Yu Yang 已提交
341

Y
Yu Yang 已提交
342
  T &back() { return m_.MutableData()->back(); }
Y
Yu Yang 已提交
343

Y
Yu Yang 已提交
344
  const_iterator begin() const { return m_.Data().begin(); }
Y
Yu Yang 已提交
345

Y
Yu Yang 已提交
346
  const_iterator end() const { return m_.Data().end(); }
347

348
  const_iterator cbegin() const { return begin(); }
Y
Yu Yang 已提交
349

350
  const_iterator cend() const { return end(); }
Y
Yu Yang 已提交
351

Y
Yu Yang 已提交
352
  const T &back() const { return m_.Data().back(); }
Y
Yu Yang 已提交
353

Y
Yu Yang 已提交
354
  T *data() { return m_.MutableData()->data(); }
Y
Yu Yang 已提交
355

Y
Yu Yang 已提交
356
  const T *data() const { return m_.Data().data(); }
Y
Yu Yang 已提交
357

Y
Yu Yang 已提交
358
  const T &front() const { return m_.Data().front(); }
Y
Yu Yang 已提交
359
  // end of std::vector iterator methods
Y
Yu Yang 已提交
360

Y
Yu Yang 已提交
361 362
  // assign this from iterator.
  // NOTE: the iterator must support `end-begin`
Y
Yu Yang 已提交
363 364
  template <typename Iter>
  void assign(Iter begin, Iter end) {
Y
Yu Yang 已提交
365
    m_.MutableData()->assign(begin, end);
Y
Yu Yang 已提交
366 367
  }

Y
Yu Yang 已提交
368 369
  // push_back. If the previous capacity is not enough, the memory will
  // double.
Y
Yu Yang 已提交
370
  void push_back(T elem) { m_.MutableData()->push_back(elem); }
D
dzhwinter 已提交
371

Y
Yu Yang 已提交
372 373 374 375
  // extend a vector by iterator.
  // NOTE: the iterator must support end-begin
  template <typename It>
  void Extend(It begin, It end) {
Y
Yu Yang 已提交
376
    m_.MutableData()->Extend(begin, end);
Y
Yu Yang 已提交
377 378 379
  }

  // resize the vector
C
refine  
chengduoZH 已提交
380
  void resize(size_t size) {
381
    if (m_.Data().size() != size) {
Y
Yu Yang 已提交
382
      m_.MutableData()->resize(size);
C
refine  
chengduoZH 已提交
383 384
    }
  }
D
dzhwinter 已提交
385

Y
Yu Yang 已提交
386
  // get cuda ptr. immutable
C
refine  
chengduoZH 已提交
387
  const T *CUDAData(platform::Place place) const {
Y
Yu Yang 已提交
388 389 390 391
    {
      auto &mtx = m_.Data().Mutex();
      std::lock_guard<std::mutex> guard(mtx);
      auto cuda_place = m_.Data().CUDAPlace();
392
      if (cuda_place == boost::none ||
393
          cuda_place == BOOST_GET(platform::CUDAPlace, place)) {
Y
Yu Yang 已提交
394 395 396 397 398 399
        return m_.Data().CUDAData(place);
      }
    }
    // If m_ contains CUDAData in a different place. Detach manually.
    m_.Detach();
    return CUDAData(place);
C
refine  
chengduoZH 已提交
400
  }
D
dzhwinter 已提交
401

Y
Yu Yang 已提交
402
  // get cuda ptr. mutable
403
  T *CUDAMutableData(platform::Place place) {
Y
Yu Yang 已提交
404 405 406 407
    {
      auto &mtx = m_.Data().Mutex();
      std::lock_guard<std::mutex> guard(mtx);
      auto cuda_place = m_.Data().CUDAPlace();
408
      if (cuda_place == boost::none ||
409
          cuda_place == BOOST_GET(platform::CUDAPlace, place)) {
Y
Yu Yang 已提交
410 411 412 413 414 415
        return m_.MutableData()->CUDAMutableData(place);
      }
    }
    // If m_ contains CUDAData in a different place. Detach manually.
    m_.Detach();
    return CUDAMutableData(place);
Y
Yu Yang 已提交
416 417
  }

Y
Yu Yang 已提交
418
  // clear
Y
Yu Yang 已提交
419
  void clear() { m_.MutableData()->clear(); }
Y
Yu Yang 已提交
420

Y
Yu Yang 已提交
421
  size_t capacity() const { return m_.Data().capacity(); }
Y
Yu Yang 已提交
422

Y
Yu Yang 已提交
423
  // reserve data
Y
Yu Yang 已提交
424
  void reserve(size_t size) { m_.Data().reserve(size); }
Y
Yu Yang 已提交
425

Y
Yu Yang 已提交
426
  // the unify method to access CPU or CUDA data. immutable.
427
  const T *Data(platform::Place place) const {
Y
Yu Yang 已提交
428 429 430
    if (platform::is_gpu_place(place)) {
      return CUDAData(place);
    } else {
431
      return data();
Y
Yu Yang 已提交
432 433 434
    }
  }

Y
Yu Yang 已提交
435
  // the unify method to access CPU or CUDA data. mutable.
436
  T *MutableData(platform::Place place) {
Y
Yu Yang 已提交
437 438
    if (platform::is_gpu_place(place)) {
      return CUDAMutableData(place);
439
    } else {
Y
Yu Yang 已提交
440
      return data();
441 442 443
    }
  }

Y
Yu Yang 已提交
444
  // implicit cast operator. Vector can be cast to std::vector implicitly.
Y
Yu Yang 已提交
445
  operator std::vector<T>() const { return m_.Data(); }
Y
Yu Yang 已提交
446

447
  bool operator==(const Vector<T> &other) const {
Y
Yu Yang 已提交
448
    if (size() != other.size()) return false;
449 450 451
    auto it1 = cbegin();
    auto it2 = other.cbegin();
    for (; it1 < cend(); ++it1, ++it2) {
Y
Yu Yang 已提交
452 453 454 455 456 457
      if (*it1 != *it2) {
        return false;
      }
    }
    return true;
  }
D
dzhwinter 已提交
458

459
  const void *Handle() const { return &m_.Data(); }
460

461 462
 private:
  // Vector is an COW object.
Y
Yu Yang 已提交
463
  mutable details::COWPtr<VectorData> m_;
Y
Yu Yang 已提交
464
};
D
dzhwinter 已提交
465

466 467 468 469 470 471
#else  // PADDLE_WITH_CUDA

template <typename T>
class CPUVector : public std::vector<T, std::allocator<T>> {
 public:
  CPUVector() : std::vector<T>() {}
472
  CPUVector(size_t count, const T &value = T())  // NOLINT
473 474
      : std::vector<T>(count, value) {}
  CPUVector(std::initializer_list<T> init) : std::vector<T>(init) {}
475 476
  CPUVector(const std::vector<T> &other) : std::vector<T>(other) {}  // NOLINT
  CPUVector(const CPUVector<T> &other) : std::vector<T>(other) {}
477
  CPUVector(CPUVector<T> &&other) : std::vector<T>(std::move(other)) {}
478
  CPUVector(std::vector<T> &&other)  // NOLINT
479
      : std::vector<T>(std::move(other)) {}
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
  CPUVector &operator=(const CPUVector &other) {
    this->assign(other.begin(), other.end());
    return *this;
  }
  CPUVector &operator=(const std::vector<T> &other) {
    this->assign(other.begin(), other.end());
    return *this;
  }

  friend std::ostream &operator<<(std::ostream &os, const CPUVector<T> &other) {
    std::stringstream ss;
    for (auto v : other) {
      os << v << " ";
    }
    return os;
  }

  T &operator[](size_t id) { return this->at(id); }

  const T &operator[](size_t id) const { return this->at(id); }

  template <typename D>
  void Extend(const D &begin, const D &end) {
    this->reserve(this->size() + size_t(end - begin));
    this->insert(this->end(), begin, end);
  }
S
sneaxiy 已提交
506 507

  const T *CUDAData(platform::Place place) const {
508 509
    PADDLE_THROW(platform::errors::Unavailable(
        "Vector::CUDAData() method is not supported in CPU-only version."));
S
sneaxiy 已提交
510 511 512
  }

  T *CUDAMutableData(platform::Place place) {
513
    PADDLE_THROW(platform::errors::Unavailable(
S
sneaxiy 已提交
514
        "Vector::CUDAMutableData() method is not supported in CPU-only "
515
        "version."));
S
sneaxiy 已提交
516 517 518
  }

  const T *Data(platform::Place place) const {
519 520 521 522
    PADDLE_ENFORCE_EQ(
        platform::is_cpu_place(place), true,
        platform::errors::Unavailable(
            "Vector::Data() method is not supported when not in CPUPlace."));
S
sneaxiy 已提交
523 524 525 526
    return this->data();
  }

  T *MutableData(platform::Place place) {
527 528 529 530
    PADDLE_ENFORCE_EQ(
        platform::is_cpu_place(place), true,
        platform::errors::Unavailable("Vector::MutableData() method is not "
                                      "supported when not in CPUPlace."));
S
sneaxiy 已提交
531 532 533 534
    return this->data();
  }

  const void *Handle() const { return static_cast<const void *>(this); }
535 536 537 538 539 540 541 542
};

template <typename T>
using Vector = CPUVector<T>;

#endif  // PADDLE_WITH_CUDA

};  // namespace framework
D
dzhwinter 已提交
543
}  // namespace paddle