stat.py 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define statistical functions of a tensor  
16 17
from ..fluid.layers import reduce_mean  #DEFINE_ALIAS

18
__all__ = ['mean', 'reduce_mean', 'std', 'var', 'numel']
19

20
import numpy as np
21
from ..fluid.framework import Variable
22
from ..fluid.layer_helper import LayerHelper
23
from ..fluid.framework import core, in_dygraph_mode
24 25
from ..fluid import layers
from .search import where
L
Liufang Sang 已提交
26
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
27 28 29 30 31 32 33 34
import paddle


def mean(x, axis=None, keepdim=False, name=None):
    """
    Computes the mean of the input tensor's elements along ``axis``.

    Args:
35
        x (Tensor): The input Tensor with data type float32, float64.
36 37 38 39 40 41 42
        axis (int|list|tuple, optional): The axis along which to perform mean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), mean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, mean is
43
            calculated over all elements of ``x``. Default is None.
44
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
45
            in the output Tensor. If ``keepdim`` is True, the dimensions of
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of average along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            x = np.array([[[1, 2, 3, 4],
                           [5, 6, 7, 8],
                           [9, 10, 11, 12]],
                          [[13, 14, 15, 16],
                           [17, 18, 19, 20],
                           [21, 22, 23, 24]]], 'float32')
70
            x = paddle.to_tensor(x)
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
            out1 = paddle.mean(x)
            # [12.5]
            out2 = paddle.mean(x, axis=-1)
            # [[ 2.5  6.5 10.5]
            #  [14.5 18.5 22.5]]
            out3 = paddle.mean(x, axis=-1, keepdim=True)
            # [[[ 2.5]
            #   [ 6.5]
            #   [10.5]]
            #  [[14.5]
            #   [18.5]
            #   [22.5]]]
            out4 = paddle.mean(x, axis=[0, 2])
            # [ 8.5 12.5 16.5]
    """

    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]

    if in_dygraph_mode():
        return core.ops.reduce_mean(x, 'dim', axis, 'keep_dim', keepdim,
                                    'reduce_all', reduce_all)

99
    check_variable_and_dtype(x, 'x/input', ['float32', 'float64'],
100
                             'mean/reduce_mean')
101 102 103 104
    check_type(axis, 'axis/dim', (int, list, tuple), 'mean/reduce_mean')
    if isinstance(axis, (list, tuple)):
        for item in axis:
            check_type(item, 'elements of axis/dim', (int), 'mean/reduce_mean')
105 106 107 108 109 110 111

    helper = LayerHelper('mean', **locals())
    attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='reduce_mean', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
112 113


114
def var(x, axis=None, unbiased=True, keepdim=False, name=None):
115
    """
116
    Computes the variance of ``x`` along ``axis`` .
117 118

    Args:
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            variance calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), variance
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is less
            than 0, it works the same way as :math:`axis + D` . If ``axis`` is
            None, variance is calculated over all elements of ``x``. Default
            is None.
        unbiased (bool, optional): Whether to use the unbiased estimation. If
            ``unbiased`` is True, the divisor used in the computation is
            :math:`N - 1`, where :math:`N` represents the number of elements
            along ``axis`` , otherwise the divisor is :math:`N`. Default is True.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
140 141

    Returns:
142 143
        Tensor, results of variance along ``axis`` of ``x``, with the same data
        type as ``x``.
144 145 146 147 148

    Examples:
        .. code-block:: python

            import paddle
149 150 151 152 153 154 155 156 157 158
            import numpy as np
            
            paddle.disable_static()

            x = np.array([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
            x = paddle.to_tensor(x)
            out1 = paddle.var(x)
            # [2.66666667]
            out2 = paddle.var(x, axis=1)
            # [1.         4.33333333]
159
    """
160 161 162 163 164
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'var')

    u = mean(x, axis, True, name)
    out = paddle.sum((x - u)**2, axis, keepdim=keepdim, name=name)
165

166 167
    n = paddle.cast(paddle.numel(x), x.dtype) \
        / paddle.cast(paddle.numel(out), x.dtype)
168
    if unbiased:
169 170 171 172 173
        one_const = paddle.ones([1], x.dtype)
        n = where(n > one_const, n - 1., one_const)
    out /= n
    return out

S
swtkiwi 已提交
174

175 176 177
def std(x, axis=None, unbiased=True, keepdim=False, name=None):
    """
    Computes the standard-deviation of ``x`` along ``axis`` .
L
Liufang Sang 已提交
178 179

    Args:
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            standard-deviation calculations. ``axis`` should be int, list(int)
            or tuple(int). If ``axis`` is a list/tuple of dimension(s),
            standard-deviation is calculated along all element(s) of ``axis`` .
            ``axis`` or element(s) of ``axis`` should be in range [-D, D),
            where D is the dimensions of ``x`` . If ``axis`` or element(s) of
            ``axis`` is less than 0, it works the same way as :math:`axis + D` .
            If ``axis`` is None, standard-deviation is calculated over all
            elements of ``x``. Default is None.
        unbiased (bool, optional): Whether to use the unbiased estimation. If
            ``unbiased`` is True, the standard-deviation is calculated via the
            unbiased estimator. If ``unbiased`` is True,  the divisor used in
            the computation is :math:`N - 1`, where :math:`N` represents the
            number of elements along ``axis`` , otherwise the divisor is
            :math:`N`. Default is True.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
L
Liufang Sang 已提交
203 204

    Returns:
205 206 207
        Tensor, results of standard-deviation along ``axis`` of ``x``, with the
        same data type as ``x``.

L
Liufang Sang 已提交
208 209 210 211
    Examples:
        .. code-block:: python

            import paddle
212 213 214 215 216 217 218 219 220 221
            import numpy as np
            
            paddle.disable_static()

            x = np.array([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
            x = paddle.to_tensor(x)
            out1 = paddle.std(x)
            # [1.63299316]
            out2 = paddle.std(x, axis=1)
            # [1.       2.081666]
L
Liufang Sang 已提交
222
    """
223 224 225 226 227
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'std')

    out = var(**locals())
    return paddle.sqrt(out)
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247


def numel(x, name=None):
    """
    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1] in static mode
    or a scalar value in imperative mode

    Args:
        x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64.

    Returns:
        Tensor: The number of elements for the input Tensor.
    
    Raises:
        TypeError: ``x`` must be a Tensor and the data type of ``x`` must be one of bool, float16, float32, float64, int32, int64.


    Examples:
        .. code-block:: python

248 249 250 251 252
            import paddle
            
            paddle.disable_static()
            x = paddle.full(shape=[4, 5, 7], fill_value=0, dtype='int32')
            numel = paddle.numel(x) # 140
253 254 255 256 257 258 259 260 261 262 263 264 265


    """
    if in_dygraph_mode():
        return core.ops.size(x)

    if not isinstance(x, Variable):
        raise TypeError("x must be a Tensor in numel")
    helper = LayerHelper('numel', **locals())
    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)
    helper.append_op(type='size', inputs={'Input': x}, outputs={'Out': out})
    return out