test_dygraph_mnist_fp16.py 4.1 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

import paddle.fluid as fluid
21
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
C
chengduo 已提交
22 23 24 25


class SimpleImgConvPool(fluid.dygraph.Layer):
    def __init__(self,
26
                 num_channels,
C
chengduo 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
                 num_filters,
                 filter_size,
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 dtype='float32',
                 param_attr=None,
                 bias_attr=None):
43
        super(SimpleImgConvPool, self).__init__()
C
chengduo 已提交
44 45

        self._conv2d = Conv2D(
46
            num_channels=num_channels,
C
chengduo 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=param_attr,
            bias_attr=bias_attr,
            use_cudnn=use_cudnn,
            dtype=dtype,
            act=act)

        self._pool2d = Pool2D(
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)

    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x


class MNIST(fluid.dygraph.Layer):
74 75
    def __init__(self, dtype="float32"):
        super(MNIST, self).__init__()
C
chengduo 已提交
76 77

        self._simple_img_conv_pool_1 = SimpleImgConvPool(
78
            num_channels=3,
C
chengduo 已提交
79 80 81 82 83 84 85 86 87
            num_filters=20,
            filter_size=5,
            pool_size=2,
            pool_stride=2,
            act="relu",
            dtype=dtype,
            use_cudnn=True)

        self._simple_img_conv_pool_2 = SimpleImgConvPool(
88
            num_channels=20,
C
chengduo 已提交
89 90 91 92 93 94 95 96
            num_filters=50,
            filter_size=5,
            pool_size=2,
            pool_stride=2,
            act="relu",
            dtype=dtype,
            use_cudnn=True)

97
        self.pool_2_shape = 50 * 53 * 53
C
chengduo 已提交
98
        SIZE = 10
99 100 101 102 103 104 105 106 107
        scale = (2.0 / (self.pool_2_shape**2 * SIZE))**0.5
        self._linear = Linear(
            self.pool_2_shape,
            10,
            param_attr=fluid.param_attr.ParamAttr(
                initializer=fluid.initializer.NormalInitializer(
                    loc=0.0, scale=scale)),
            act="softmax",
            dtype=dtype)
C
chengduo 已提交
108 109 110 111

    def forward(self, inputs, label):
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
112 113
        x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape])
        cost = self._linear(x)
C
chengduo 已提交
114 115 116 117 118 119 120 121 122 123 124 125
        loss = fluid.layers.cross_entropy(cost, label)
        avg_loss = fluid.layers.mean(loss)
        return avg_loss


class TestMnist(unittest.TestCase):
    def test_mnist_fp16(self):
        if not fluid.is_compiled_with_cuda():
            return
        x = np.random.randn(1, 3, 224, 224).astype("float16")
        y = np.random.randn(1, 1).astype("int64")
        with fluid.dygraph.guard(fluid.CUDAPlace(0)):
126
            model = MNIST(dtype="float16")
C
chengduo 已提交
127 128
            x = fluid.dygraph.to_variable(x)
            y = fluid.dygraph.to_variable(y)
129 130
            loss = model(x, y)
            print(loss.numpy())
C
chengduo 已提交
131 132 133 134


if __name__ == "__main__":
    unittest.main()