test_complex_getitem.py 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
20
from paddle.fluid.framework import _test_eager_guard
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83


class TestComplexGetitemLayer(unittest.TestCase):
    def setUp(self):
        self._places = [fluid.CPUPlace()]
        if fluid.core.is_compiled_with_cuda():
            self._places.append(fluid.CUDAPlace(0))

    def test_case1(self):
        x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
        x_np_slice = x_np[0]

        for place in self._places:
            with dg.guard(place):
                x_var = dg.to_variable(x_np)
                x_var_slice = x_var[0]

            np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)

    def test_case2(self):
        x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
        x_np_slice = x_np[0][1]

        for place in self._places:
            with dg.guard(place):
                x_var = dg.to_variable(x_np)
                x_var_slice = x_var[0][1]

            np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)

    def test_case3(self):
        x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
        x_np_slice = x_np[0][1][2]

        for place in self._places:
            with dg.guard(place):
                x_var = dg.to_variable(x_np)
                x_var_slice = x_var[0][1][2]

            np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)

    def test_case4(self):
        x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
        x_np_slice = x_np[0][1][0:3]

        for place in self._places:
            with dg.guard(place):
                x_var = dg.to_variable(x_np)
                x_var_slice = x_var[0][1][0:3]

            np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)

    def test_case5(self):
        x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
        x_np_slice = x_np[0][1][0:4:2]

        for place in self._places:
            with dg.guard(place):
                x_var = dg.to_variable(x_np)
                x_var_slice = x_var[0][1][0:4:2]

            np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)

84 85
            np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)

86 87 88 89 90 91 92 93 94 95 96
    def test_case6(self):
        x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
        x_np_slice = x_np[0][1:3][0:4:2]

        for place in self._places:
            with dg.guard(place):
                x_var = dg.to_variable(x_np)
                x_var_slice = x_var[0][1:3][0:4:2]

            np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)

97 98 99 100 101 102 103 104 105
    def test_eager(self):
        with _test_eager_guard():
            self.test_case1()
            self.test_case2()
            self.test_case3()
            self.test_case4()
            self.test_case5()
            self.test_case6()

106 107 108

if __name__ == '__main__':
    unittest.main()