engine.py 23.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import logging
from collections import defaultdict

import paddle
20
import paddle.utils as utils
21 22
import paddle.distributed.auto_parallel as auto

23
from paddle import fluid, static
24
from paddle.io import Dataset
25
from paddle.metric import Metric
26
from paddle.static import InputSpec
27
from paddle.fluid import core
28
from paddle.fluid import program_guard
29
from paddle.fluid.layers.utils import flatten
30
from paddle.fluid.executor import global_scope, _to_name_str
31
from paddle.fluid.backward import append_backward
32
from paddle.fluid.framework import Operator
33 34
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.dygraph.parallel import ParallelEnv
35
from paddle.distributed import fleet
36
from paddle.distributed.utils import get_logger
37
from paddle.distributed.passes import new_pass, PassContext
38

39
# from .cluster import Cluster, get_default_cluster
40 41
from .planner_v2 import Planner
from .parallelizer_v2 import Parallelizer
42 43 44 45 46 47 48
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .dist_loader import NonIterableGeneratorLoader
from .utils import make_data_unshard, set_grad_var_shape
from .utils import print_program_with_dist_attr, to_list
from .process_group import get_all_process_groups, get_world_process_group
from .dist_context import DistributedContext, get_default_distributed_context
49 50 51


class Engine:
52

53 54 55 56 57 58
    def __init__(self,
                 model=None,
                 inputs_spec=None,
                 labels_spec=None,
                 cluster=None,
                 strategy=None):
59
        self.model = model
60 61
        self.inputs_spec = self._validate_spec(inputs_spec)
        self.labels_spec = self._validate_spec(labels_spec)
62
        self.cluster = cluster
63 64
        # if self.cluster is None:
        #     self.cluster = get_default_cluster()
65
        self.strategy = strategy
66 67
        if self.strategy is None:
            self.strategy = fleet.DistributedStrategy()
68

69
        self._executor = None
70 71 72 73 74 75
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
        self._logger = get_logger(logging.INFO)

        self._default_strategy = None
76 77
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
78
        self._orig_dist_context = get_default_distributed_context()
79
        self._dist_contexts = {}
80 81
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
82 83 84 85
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
86 87 88 89

    def prepare(self,
                optimizer=None,
                loss=None,
90
                gradient_scale=True,
91 92
                metrics=None,
                all_ranks=False):
93 94 95
        if optimizer and not isinstance(
                optimizer,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer)):
96 97 98 99
            raise TypeError(
                    "'optimizer' must be object of class `paddle.optimizer.Optimizer`" \
                        " or `paddle.fluid.optimizer.Optimizer`."
                )
100
        self._optimizer = optimizer
101 102 103 104 105 106

        if loss and not isinstance(loss,
                                   paddle.nn.Layer) and not callable(loss):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
            )
107
        self._loss = loss
108 109 110 111 112 113

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
114
        self._metrics = to_list(metrics)
115
        self._gradient_scale = gradient_scale
116 117 118

        self._planned_mode = None
        self._modes = ['train', 'eval', 'predict']
119
        # Build forward program
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        self._build()

        # Do auto parallel process
        for mode in self._modes:
            # Do the planning process
            self._plan(mode)
            # Do the parallel process
            self._parallel(mode, all_ranks)
            # Init comm and startup program
            self._initialize(mode)

    def _build(self):
        for mode in self._modes:
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

            losses = []
            metrics = []
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
141 142
            with static.program_guard(serial_main_prog, serial_startup_prog), \
                utils.unique_name.guard():
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
                inputs_spec = self.inputs_spec
                labels_spec = self.labels_spec if self.labels_spec else []
                inputs = [s._create_feed_layer() for s in inputs_spec]
                labels = [s._create_feed_layer() for s in labels_spec]
                outputs = to_list(self.model(*inputs))
                if mode != "predict" and self._loss:
                    losses = to_list(self._loss(*(outputs + labels)))

                if mode != "predict":
                    for metric in self._metrics:
                        metrics.extend(
                            to_list(metric.compute(*(outputs + labels))))

            default_ctx = get_default_distributed_context()
            if not default_ctx.has_annotation or self._default_strategy:
                inputs = [self._set_data_parallel(var) for var in inputs]
                labels = [self._set_data_parallel(var) for var in labels]

            # self._feed_vars[mode] = {"inputs": inputs, "labels": labels}
            feed_vars = {"inputs": inputs, "labels": labels}

            # self._fetch_vars[mode] = {
            #     "outputs": flatten(outputs),
            #     "loss": losses,
            #     "metrics": metrics
            # }
            fetch_vars = {
                "outputs": flatten(outputs),
                "loss": losses,
                "metrics": metrics
            }

            self._dist_contexts[mode] = DistributedContext(
                serial_main_prog, serial_startup_prog, self._optimizer, losses,
                feed_vars, fetch_vars, self.cluster, self.strategy)
            self._dist_contexts[mode].gradient_scale = self._gradient_scale

    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

        self.planner = Planner(mode, self._dist_contexts[mode])
        self.planner.plan()

    def _parallel(self, mode, all_ranks):
190 191 192
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
193
        parallelizer = Parallelizer(mode, self.planner.completer,
194 195 196 197 198
                                    self._dist_contexts[mode])
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
199 200

    def _init_dist_context(self, mode):
201
        # Init dist_context['mode'] with the first planned dist_context
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
                assert op.type == ref_op.type, \
                    "'{}' mode op '{}' is different with '{}' op '{}'. ".format(mode, op.type, ref_mode, ref_op.type)
                ref_op_dist_attr = ref_dist_context.get_op_dist_attr_for_program(
                    ref_op)
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
219
        # Get the current content from the distributed context
220 221 222 223
        self._serial_main_progs[mode] = self._dist_contexts[
            mode].serial_main_program
        self._serial_startup_progs[mode] = self._dist_contexts[
            mode].serial_startup_program
224 225 226 227
        self._dist_main_progs[mode] = self._dist_contexts[
            mode].dist_main_programs
        self._dist_startup_progs[mode] = self._dist_contexts[
            mode].dist_startup_programs
228 229
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
230

231 232 233 234 235 236 237 238
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
            for process_group in all_process_groups:
                if self._cur_rank not in process_group.ranks:
                    continue
                process_group.instantiate()
239 240 241 242 243 244 245

        # initialize
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
            self._place = fluid.CUDAPlace(ParallelEnv().dev_id)
        if self._executor is None:
            self._executor = paddle.static.Executor(self._place)
246 247 248 249 250 251 252 253 254 255
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
256

257 258 259 260
    def fit(self,
            train_data,
            batch_size=1,
            epochs=1,
261
            fetches=None,
262 263
            steps_per_epoch=None,
            use_program_cache=False,
264
            return_numpy=True):
265 266 267
        # TODO: callbacks
        # TODO: evaluate after training
        self.mode = 'train'
268
        assert self.mode in self._dist_main_progs, \
269
            "train model is not ready, please call `engine.prepare()` first."
270 271
        train_dataloader = self._create_dataloader(train_data, batch_size,
                                                   epochs, steps_per_epoch)
272

273 274 275 276
        usr_fetch = self._to_map_fetch(fetches)
        fetch_loss = self._inner_fetch(self.fetch_vars["loss"])
        fetch_list, fetch_map = self._fetch_map(fetch_loss, usr_fetch)

277
        for epoch in range(epochs):
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
            train_logs = {"epoch": epoch}
            for step, _ in enumerate(train_dataloader):
                outs = self._executor.run(self.main_program,
                                          fetch_list=fetch_list,
                                          use_program_cache=use_program_cache,
                                          return_numpy=return_numpy)
                train_logs["step"] = step
                # inner fetches
                if fetch_loss:
                    train_logs["train_loss"] = outs[0][0]
                # user fetches
                user_outs = outs[len(fetch_loss):]
                user_fetch_list = fetch_list[len(fetch_loss):]
                for i, out in enumerate(user_outs):
                    train_logs["train_" +
                               fetch_map[user_fetch_list[i]]] = out[0]
294
                self._logger.info(train_logs)
295

296 297 298
    def evaluate(self,
                 eval_data,
                 batch_size=1,
299
                 fetches=None,
300
                 use_program_cache=False,
301
                 return_numpy=True):
302
        self.mode = 'eval'
303
        assert self.mode in self._dist_main_progs, \
304
            "eval model is not ready, please call `engine.prepare()` first."
305
        eval_dataloader = self._create_dataloader(eval_data, batch_size)
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

        usr_fetch = self._to_map_fetch(fetches)
        fetch_loss = self._inner_fetch(self.fetch_vars["loss"])
        fetch_metrics = self._inner_fetch(self.fetch_vars["metrics"])
        inner_fetch = dict(fetch_loss, **fetch_metrics)
        fetch_list, fetch_map = self._fetch_map(inner_fetch, usr_fetch)

        for step, _ in enumerate(eval_dataloader):
            eval_logs = {"step": step}
            outs = self._executor.run(self.main_program,
                                      fetch_list=fetch_list,
                                      use_program_cache=use_program_cache,
                                      return_numpy=return_numpy)
            # inner fetches
            if fetch_loss:
                eval_logs["eval_loss"] = outs[0]
            # Metric
            if fetch_metrics:
                metric_out = outs[len(fetch_loss):len(inner_fetch)]
                for metric in self._metrics:
                    metric.update(*metric_out)
                    results = metric.accumulate()
                    for i, res in enumerate(to_list(results)):
                        eval_logs["eval_" + metric.name()[i]] = res
            # usr fetches
            usr_out = outs[len(inner_fetch):]
            usr_fetch_list = fetch_list[len(inner_fetch):]
            for i, out in enumerate(usr_out):
                eval_logs["eval_" + fetch_map[usr_fetch_list[i]]] = out
            # logger
336
            self._logger.info(eval_logs)
337

338 339 340
    def predict(self,
                test_data,
                batch_size=1,
341
                fetches=None,
342
                use_program_cache=False,
343
                return_numpy=True):
344
        self.mode = 'predict'
345
        assert self.mode in self._dist_main_progs, \
346
            "predict model is not ready, please call `engine.prepare()` first."
347
        test_dataloader = self._create_dataloader(test_data, batch_size)
348 349 350 351

        usr_fetch = self._to_map_fetch(fetches)
        fetch_outputs = self._inner_fetch(self.fetch_vars["outputs"])
        fetch_list, fetch_map = self._fetch_map(fetch_outputs, usr_fetch)
352 353

        outputs = []
354 355 356 357 358 359 360 361 362
        for step, _ in enumerate(test_dataloader):
            predict_logs = {"step": step}
            outs = self._executor.run(self.main_program,
                                      fetch_list=fetch_list,
                                      use_program_cache=use_program_cache,
                                      return_numpy=return_numpy)
            outputs.append(outs[:len(fetch_outputs)])
            for i, out in enumerate(outs):
                predict_logs["pred_" + fetch_map[fetch_list[i]]] = out[0]
363
            self._logger.info(predict_logs)
364

365
        return outputs
366

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    def _local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

    def _to_map_fetch(self, fetches):
        if not fetches:
            return {}
        if isinstance(fetches, dict):
            fetch_var_names = list(map(_to_name_str, fetches.values()))
            usr_fetches = dict(zip(fetch_var_names, list(fetches.keys())))
        elif isinstance(fetches, list):
            fetch_var_names = list(map(_to_name_str, fetches))
            usr_fetches = dict(zip(fetch_var_names, fetch_var_names))
        return dict(filter(lambda x: self._local_var(x[0]),
                           usr_fetches.items()))

    def _inner_fetch(self, fetch_vars):
        fetch_list = list(
            map(lambda x: x.name, list(filter(self._local_var, fetch_vars))))
        inner_fetches = dict(zip(fetch_list, fetch_list))
        return inner_fetches

    def _fetch_map(self, inner_fetch, usr_fetch):
        # replace inner fetch name if usr set for it
        for iname in inner_fetch:
            if iname in usr_fetch:
                inner_fetch[iname] = usr_fetch[iname]
                usr_fetch.pop(iname)
        fetches = dict(inner_fetch, **usr_fetch)
        return list(fetches.keys()), fetches
397

398 399 400 401
    def _create_dataloader(self,
                           dataset,
                           batch_size,
                           epochs=1,
402
                           steps_per_epoch=None):
403 404 405 406
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self.mode][self._cur_rank]
        dist_context = self._dist_contexts[self.mode]
        dist_main_block = dist_main_prog.global_block()
407

408
        # NOTE: Get feed_list from dist_program, then insert dataloader op
409 410
        # with sharded var shape. Because predict_program does not contain
        # labels var, so we will filter dataset's value with length of feed_list.
411 412 413 414 415 416
        inputs_var = self._feed_vars[self.mode]["inputs"]
        labels_var = self._feed_vars[self.mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
417 418
        dp_world_size, dp_rank = self._get_data_parallel_info(
            feed_list[0], dist_context)
419 420

        # remove the first three ops if multi run fit/evaluate/predict
421
        op_size = len(dist_main_block.ops)
422 423 424 425
        if dist_main_block.ops[0].type == 'create_py_reader':
            op_size -= 3
            for _ in range(3):
                dist_main_block._remove_op(0, sync=False)
426 427

        # insert read op at the end of program
428
        places = paddle.static.cuda_places()
429
        with static.program_guard(dist_main_prog, dist_startup_prog):
430
            dataloader = NonIterableGeneratorLoader(
431 432 433 434 435 436
                dataset,
                feed_list,
                places,
                batch_size,
                epochs,
                steps_per_epoch,
437 438 439 440
                data_parallel_world_size=dp_world_size,
                data_parallel_rank=dp_rank)

        # move read op from the end of program to the start of program
441
        new_op_size = len(dist_main_block.ops)
442
        for _ in range(new_op_size - 1, op_size - 1, -1):
443 444 445
            op = dist_main_block.ops[new_op_size - 1]
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(op.desc)
446 447 448
            new_op = Operator(dist_main_block,
                              new_op_desc,
                              type=new_op_desc.type())
449 450 451 452 453 454 455 456
            dist_main_block.ops.insert(0, new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        for _ in range(new_op_size - op_size):
            dist_main_block._remove_op(new_op_size, sync=False)
        dist_main_block._sync_with_cpp()
        return dataloader

457 458 459 460 461 462 463 464 465 466 467
    def _validate_spec(self, specs):
        specs = to_list(specs)
        if specs is not None:
            for i, spec in enumerate(specs):
                assert isinstance(spec, InputSpec)
                if spec.name is None:
                    raise ValueError(
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
        return specs

468 469 470
    def _set_data_parallel(self, var):
        if self._nranks == 1:
            self._default_strategy = 'serial'
471 472 473 474 475 476
            auto.shard_tensor(var,
                              dist_attr={
                                  "process_mesh": [0],
                                  "dims_mapping":
                                  [-1 for _ in range(len(var.shape))]
                              })
477 478
        else:
            self._default_strategy = 'dp'
479 480 481 482 483 484 485
            auto.shard_tensor(var,
                              dist_attr={
                                  "process_mesh":
                                  list(range(self._nranks)),
                                  "dims_mapping":
                                  [0] + [-1 for _ in range(len(var.shape) - 1)]
                              })
486 487 488

        return var

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
    def _get_data_parallel_info(self, var, dist_context):
        # get data parallel world size and current data parallel rank
        from .utils import _get_comm_group, _get_corresponding_rank

        tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        process_mesh = tensor_dist_attr.process_mesh
        dims_mapping = tensor_dist_attr.dims_mapping

        if self._cur_rank not in process_mesh.processes:
            rank_id = _get_corresponding_rank(dist_context, process_mesh,
                                              self._cur_rank)
        else:
            rank_id = self._cur_rank

        batch_size_axis = dims_mapping[0]
        if batch_size_axis > -1 and process_mesh.topology[batch_size_axis] > 1:
            group_ranks = _get_comm_group(process_mesh.processes,
                                          process_mesh.topology,
                                          batch_size_axis, rank_id)
            return len(group_ranks), group_ranks.index(rank_id)

        return None, None

512 513 514 515 516
    def save(self, path, training=True, mode=None):
        if not mode:
            mode = self.mode

        if training:
517 518
            assert 'train' in self._serial_main_progs, \
                "training model is not ready, please call `engine.prepare()` first."
519 520 521
            serial_program = self._serial_main_progs["train"]
            dist_main_prog = self._dist_main_progs["train"][self._cur_rank]
            dist_context = self._dist_contexts["train"]
522 523 524 525
            self._saver.save(path,
                             serial_program=serial_program,
                             dist_main_program=dist_main_prog,
                             dist_context=dist_context)
526 527 528 529 530
        else:
            assert mode, "Please set the 'mode' you want to save."
            feed_vars = self._feed_vars[mode]['inputs']
            fetch_vars = self._fetch_vars[mode]['outputs']
            dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
531 532 533 534 535
            self._saver.save_inference_model(path,
                                             feed_vars,
                                             fetch_vars,
                                             self._executor,
                                             program=dist_main_prog)
536

537 538 539 540
    def load(self, path, strict=True, load_optimizer=True, mode=None):
        if not mode:
            mode = self.mode
        assert mode, "Please set the 'mode' you want to load."
541

542 543 544 545
        dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
        self._saver.load(path, dist_main_prog, dist_context, strict,
                         load_optimizer)
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

    @property
    def mode(self):
        return self._mode

    @mode.setter
    def mode(self, mode):
        self._mode = mode

    @property
    def main_program(self):
        return self._dist_main_progs[self.mode][self._cur_rank]

    @property
    def startup_program(self):
        return self._dist_startup_progs[self.mode][self._cur_rank]

    @property
    def dist_context(self):
        return self._dist_contexts[self.mode]

    @property
    def serial_main_program(self):
        return self._serial_main_progs[self.mode]

    @property
    def serial_startup_program(self):
        return self._serial_startup_progs[self.mode]
574 575 576 577

    @property
    def fetch_vars(self):
        return self._fetch_vars[self.mode]