conv_bn_fuse_pass.cc 10.7 KB
Newer Older
S
Sylwester Fraczek 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/conv_bn_fuse_pass.h"
#include <functional>
#include <string>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace framework {
namespace ir {

#define GET_CONV_BN_NODES(pattern_name)                                      \
  /* OPERATORS */                                                            \
  GET_IR_NODE_FROM_SUBGRAPH(conv, conv, pattern_name);                       \
  GET_IR_NODE_FROM_SUBGRAPH(batch_norm, batch_norm, pattern_name);           \
  /* CONV inputs */                                                          \
  GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight, pattern_name);         \
  /* CONV outputs */                                                         \
  GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, pattern_name);               \
  /* BN inputs */                                                            \
  GET_IR_NODE_FROM_SUBGRAPH(bn_scale, bn_scale, pattern_name);               \
  GET_IR_NODE_FROM_SUBGRAPH(bn_bias, bn_bias, pattern_name);                 \
  GET_IR_NODE_FROM_SUBGRAPH(bn_mean, bn_mean, pattern_name);                 \
  GET_IR_NODE_FROM_SUBGRAPH(bn_variance, bn_variance, pattern_name);         \
  /* BN outputs */                                                           \
  GET_IR_NODE_FROM_SUBGRAPH(bn_out, bn_out, pattern_name); /* Out */         \
  GET_IR_NODE_FROM_SUBGRAPH(bn_mean_out, bn_mean_out, pattern_name);         \
  GET_IR_NODE_FROM_SUBGRAPH(bn_variance_out, bn_variance_out, pattern_name); \
  GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name);     \
  GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name)

// reshape to two dimensions {A, B * C * ...}
48 49
DDim make_dims_2d(DDim dims) {
  auto dims_count = dims.size();
S
Sylwester Fraczek 已提交
50 51 52 53
  PADDLE_ENFORCE_GT(dims_count, 0);

  int size2 = 1;
  for (int i = 1; i < dims_count; i++) {
54
    size2 *= dims[i];
S
Sylwester Fraczek 已提交
55
  }
56
  return make_ddim({dims[0], size2});
S
Sylwester Fraczek 已提交
57 58 59 60 61 62 63 64
}

void recompute_bias_and_weights(const Scope* scope,
                                ir::Node* conv_weight,            //
                                const ir::Node& bn_scale,         //
                                const LoDTensor& bn_bias_tensor,  //
                                const ir::Node& bn_mean,          //
                                const ir::Node& bn_variance,      //
65 66
                                LoDTensor* eltwise_y_in_tensor,   //
                                float epsilon) {
67 68 69 70 71 72 73
  using EigenVectorArrayMap =
      Eigen::Map<Eigen::Array<float, Eigen::Dynamic, 1>>;
  using ConstEigenVectorArrayMap =
      Eigen::Map<const Eigen::Array<float, Eigen::Dynamic, 1>>;
  using EigenMatrixArrayMap = Eigen::Map<
      Eigen::Array<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;

S
Sylwester Fraczek 已提交
74 75 76 77 78 79 80 81
  // Re-compute bias of conv2d from BN
  PADDLE_ENFORCE_EQ(eltwise_y_in_tensor->dims(), bn_bias_tensor.dims());

  auto* scale_tensor = scope->FindVar(bn_scale.Name())->GetMutable<LoDTensor>();
  auto* variance_tensor =
      scope->FindVar(bn_variance.Name())->GetMutable<LoDTensor>();
  auto* mean_tensor = scope->FindVar(bn_mean.Name())->GetMutable<LoDTensor>();

82 83 84 85 86 87 88 89 90
  ConstEigenVectorArrayMap scale_array(scale_tensor->data<float>(),
                                       scale_tensor->numel(), 1);
  EigenVectorArrayMap variance_array(
      variance_tensor->mutable_data<float>(platform::CPUPlace()),
      variance_tensor->numel(), 1);
  ConstEigenVectorArrayMap mean_array(mean_tensor->data<float>(),
                                      mean_tensor->numel(), 1);
  ConstEigenVectorArrayMap bn_bias_array(bn_bias_tensor.data<float>(),
                                         bn_bias_tensor.numel(), 1);
S
Sylwester Fraczek 已提交
91

92 93 94 95 96 97 98 99
  // variance will not be used anymore, so make it std_array and then tmp_array
  variance_array += epsilon;
  variance_array = variance_array.sqrt();
  variance_array = scale_array / variance_array;

  EigenVectorArrayMap eltwise_y_in_array(
      eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
      eltwise_y_in_tensor->numel(), 1);
100

101 102
  eltwise_y_in_array =
      ((eltwise_y_in_array - mean_array) * variance_array) + bn_bias_array;
S
Sylwester Fraczek 已提交
103 104

  // Re-compute weight of conv2d from BN
105 106 107 108 109 110 111 112 113
  auto* weights = scope->FindVar(conv_weight->Name())->GetMutable<LoDTensor>();
  auto weights_shape = weights->dims();
  auto weights_shape_2d = make_dims_2d(weights_shape);

  EigenMatrixArrayMap weights_array_2d(
      weights->mutable_data<float>(platform::CPUPlace()), weights_shape_2d[0],
      weights_shape_2d[1]);

  weights_array_2d.colwise() *= variance_array;
S
Sylwester Fraczek 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
}

std::unique_ptr<ir::Graph> ConvBNFusePass::ApplyImpl(
    std::unique_ptr<ir::Graph> graph) const {
  PADDLE_ENFORCE(graph.get());
  FusePassBase::Init(name_scope_, graph.get());

  auto* scope = param_scope();
  PADDLE_ENFORCE(scope);

  GraphPatternDetector gpd;
  auto* conv_input =
      gpd.mutable_pattern()
          ->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
          ->AsInput()
          ->assert_is_op_input("conv2d", "Input");
  patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
  conv_bn_pattern(conv_input, false /*with_eltwise_add*/);

  int found_conv_bn_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "handle ConvBN fuse";

    // conv, batch_norm,
    // conv_weight, conv_out,
    // bn_scale, bn_bias, bn_mean, bn_variance,
    // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean, bn_saved_variance
    GET_CONV_BN_NODES(conv_bn_pattern);

    // Create eltwise_y (conv bias) variable
    VarDesc eltwise_y_in_desc(
        patterns::PDNodeName(name_scope_, "eltwise_y_in"));
    auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc);
    auto* eltwise_y_in_tensor =
        scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>();

    // Get batch norm bias
    auto* bn_bias_tensor =
        scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();

    // Initialize eltwise_y
    eltwise_y_in_tensor->Resize(bn_bias_tensor->dims());
    std::fill_n(eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
                eltwise_y_in_tensor->numel(), 0.0f);

    // update weights and biases
161
    float epsilon = boost::get<float>(batch_norm->Op()->GetAttr("epsilon"));
S
Sylwester Fraczek 已提交
162
    recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor,
163 164
                               *bn_mean, *bn_variance, eltwise_y_in_tensor,
                               epsilon);
S
Sylwester Fraczek 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

    // Create an elementwise add node
    OpDesc desc;
    desc.SetInput("X", std::vector<std::string>({conv_out->Name()}));
    desc.SetInput("Y", std::vector<std::string>({eltwise_y_in_node->Name()}));
    desc.SetOutput("Out", std::vector<std::string>({bn_out->Name()}));
    desc.SetType("elementwise_add");
    desc.SetAttr("axis", 1);
    bool a = boost::get<bool>(conv->Op()->GetAttr("use_mkldnn"));
    desc.SetAttr("use_mkldnn", a);
    auto eltwise_op = g->CreateOpNode(&desc);  // OpDesc will be copied.

    GraphSafeRemoveNodes(graph.get(), {bn_scale, bn_bias, bn_mean, bn_variance,
                                       batch_norm, bn_mean_out, bn_variance_out,
                                       bn_saved_mean, bn_saved_variance});

    PADDLE_ENFORCE(subgraph.count(conv_input));
    IR_NODE_LINK_TO(conv_out, eltwise_op);
    IR_NODE_LINK_TO(eltwise_y_in_node, eltwise_op);
    IR_NODE_LINK_TO(eltwise_op, bn_out);

    found_conv_bn_count++;
  };

  gpd(graph.get(), handler);

  AddStatis(found_conv_bn_count);
  return graph;
}

std::unique_ptr<ir::Graph> ConvEltwiseAddBNFusePass::ApplyImpl(
    std::unique_ptr<ir::Graph> graph) const {
  PADDLE_ENFORCE(graph.get());
  FusePassBase::Init(name_scope_, graph.get());

  auto* scope = param_scope();
  PADDLE_ENFORCE(scope);

  GraphPatternDetector gpd;
  auto* conv_input =
      gpd.mutable_pattern()
          ->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
          ->AsInput()
          ->assert_is_op_input("conv2d", "Input");
  patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
  conv_bn_pattern(conv_input, true /*with_eltwise_add*/);

  int found_conv_bn_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "handle ConvBN fuse";

    // conv, batch_norm,
    // conv_weight, conv_out,
    // bn_scale, bn_bias, bn_mean, bn_variance,
    // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,bn_saved_variance
    GET_CONV_BN_NODES(conv_bn_pattern);
    // OPERATORS
    GET_IR_NODE_FROM_SUBGRAPH(eltwise, eltwise, conv_bn_pattern);
    // BIAS inputs
    GET_IR_NODE_FROM_SUBGRAPH(eltwise_y_in, eltwise_y_in, conv_bn_pattern);
    // BIAS outputs
    GET_IR_NODE_FROM_SUBGRAPH(eltwise_out, eltwise_out, conv_bn_pattern);

    // Get eltwise_y (conv bias) variable
    auto* eltwise_y_in_tensor =
        scope->FindVar(eltwise_y_in->Name())->GetMutable<LoDTensor>();

    // Get batch norm bias
    auto* bn_bias_tensor =
        scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();

    // update weights and biases
238
    float epsilon = boost::get<float>(batch_norm->Op()->GetAttr("epsilon"));
S
Sylwester Fraczek 已提交
239
    recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor,
240 241
                               *bn_mean, *bn_variance, eltwise_y_in_tensor,
                               epsilon);
S
Sylwester Fraczek 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

    // Update the elementwise_add node
    eltwise->Op()->SetAttr("axis", 1);
    eltwise->Op()->SetOutput("Out", std::vector<std::string>({bn_out->Name()}));

    GraphSafeRemoveNodes(
        graph.get(),
        {bn_scale, bn_bias, bn_mean, bn_variance, batch_norm, bn_mean_out,
         bn_variance_out, bn_saved_mean, bn_saved_variance, eltwise_out});

    PADDLE_ENFORCE(subgraph.count(conv_input));
    IR_NODE_LINK_TO(eltwise, bn_out);

    found_conv_bn_count++;
  };

  gpd(graph.get(), handler);

  AddStatis(found_conv_bn_count);
  return graph;
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(conv_bn_fuse_pass, paddle::framework::ir::ConvBNFusePass);
REGISTER_PASS(conv_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::ConvEltwiseAddBNFusePass);