mkldnn_helper.h 5.4 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
T
tensor-tang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <mkldnn.h>
17
#include <algorithm>
G
gongweibao 已提交
18
#include <string>
19
#include <vector>
20
#include "paddle/fluid/framework/operator.h"
M
mozga-intel 已提交
21
#include "paddle/fluid/platform/place.h"
22

T
tensor-tang 已提交
23 24 25 26 27 28
namespace paddle {
namespace platform {

using MKLDNNStream = mkldnn::stream;
using MKLDNNEngine = mkldnn::engine;
using MKLDNNMemory = mkldnn::memory;
29
using MKLDNNMemoryDescriptor = mkldnn::memory::desc;
T
tensor-tang 已提交
30 31 32
using MKLDNNPrimitive = mkldnn::primitive;
using MKLDNNPrimitiveDesc = mkldnn::handle<mkldnn_primitive_desc_t>;

33 34 35 36 37
typedef std::unique_ptr<MKLDNNStream> MKLDNNStreamPtr;
typedef std::unique_ptr<MKLDNNEngine> MKLDNNEnginePtr;
typedef std::unique_ptr<MKLDNNMemory> MKLDNNMemoryPtr;
typedef std::unique_ptr<MKLDNNPrimitive> MKLDNNPrimitivePtr;
typedef std::unique_ptr<MKLDNNPrimitiveDesc> MKLDNNPrimitiveDescPtr;
T
tensor-tang 已提交
38

39 40 41 42 43
template <typename Type>
void* to_void_cast(const Type* t) {
  return static_cast<void*>(const_cast<Type*>(t));
}

K
Krzysztof Binias 已提交
44 45 46 47 48
template <typename Type>
void* to_void_reinterpret_cast(const Type* t) {
  return reinterpret_cast<void*>(const_cast<Type*>(t));
}

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
template <class Type>
using tf_desc = typename Type::desc;

template <class Type>
using tf_pd = typename Type::primitive_desc;

template <typename Type, typename Engine, typename... Args>
std::shared_ptr<tf_pd<Type>> MKLDNNFwdPrimitiveDesc(const Engine& e,
                                                    Args&&... args) {
  auto desc = tf_desc<Type>(mkldnn::prop_kind::forward, (args)...);
  auto pd = new tf_pd<Type>(desc, e);
  return std::shared_ptr<tf_pd<Type>>(pd);
}

template <typename Type, typename Engine, typename Primitive, typename... Args>
tf_pd<Type> MKLDNNBwdPrimitiveDesc(const Engine& e, const Primitive& p,
                                   Args&&... args) {
  auto desc = tf_desc<Type>(args...);
  return tf_pd<Type>(desc, e, p);
}

70 71 72 73 74 75 76 77 78 79 80 81
inline mkldnn::memory::desc MKLDNNMemDesc(const std::vector<int>& dims,
                                          mkldnn::memory::data_type data_type,
                                          mkldnn::memory::format format) {
  mkldnn::memory::dims tz = dims;
  return mkldnn::memory::desc({tz}, data_type, format);
}

inline bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx) {
  bool use_mkldnn = ctx.Attr<bool>("use_mkldnn");
  return use_mkldnn && platform::is_cpu_place(ctx.GetPlace());
}

82 83 84 85 86 87 88 89 90 91
template <typename Type>
mkldnn::memory::data_type MKLDNNGetDataType() {
  return mkldnn::memory::data_undef;
}

template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<float>() {
  return mkldnn::memory::f32;
}

M
mozga-intel 已提交
92 93 94 95 96 97 98 99 100 101 102 103
inline void Reorder(const mkldnn::memory& src, const mkldnn::memory& dst) {
  auto reorder_prim = mkldnn::reorder(src, dst);
  std::vector<mkldnn::primitive> pipeline;
  pipeline.push_back(reorder_prim);
  mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}

inline mkldnn::memory::format GetMKLDNNFormat(const mkldnn::memory memory) {
  return static_cast<mkldnn::memory::format>(
      memory.get_primitive_desc().desc().data.format);
}

104 105 106 107 108 109
inline mkldnn::memory::format GetMKLDNNFormat(
    const mkldnn::sum::primitive_desc& memory) {
  return static_cast<mkldnn::memory::format>(
      memory.dst_primitive_desc().desc().data.format);
}

110 111 112 113 114 115
inline mkldnn::memory::format MKLDNNFormatForSize(
    size_t dims_size, mkldnn::memory::format data_format) {
  if (dims_size == 1) {
    return mkldnn::memory::format::x;
  } else if (dims_size == 2) {
    return mkldnn::memory::format::nc;
116 117 118 119 120 121 122 123 124 125 126 127
  } else if (dims_size == 3) {
    if (data_format == mkldnn::memory::format::nchw) {
      return mkldnn::memory::format::ncw;
    } else if (data_format == mkldnn::memory::format::nhwc) {
      return mkldnn::memory::format::nwc;
    }
  } else if (dims_size == 5) {
    if (data_format == mkldnn::memory::format::nchw) {
      return mkldnn::memory::format::ncdhw;
    } else if (data_format == mkldnn::memory::format::nhwc) {
      return mkldnn::memory::format::ndhwc;
    }
128 129 130 131
  }
  return data_format;
}

132 133 134 135 136 137 138 139 140 141 142 143
inline mkldnn::memory::format data_format_to_memory_format(
    const std::string& data_format) {
  switch (framework::StringToDataLayout(data_format)) {
    case framework::DataLayout::kNHWC:
      return mkldnn::memory::format::nhwc;
    case framework::DataLayout::kNCHW:
      return mkldnn::memory::format::nchw;
    default:
      return mkldnn::memory::format::any;
  }
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
inline mkldnn::memory::format StringToMKLDNNFormat(std::string* format) {
  std::transform(format->begin(), format->end(), format->begin(), ::tolower);

  if (!format->compare("nchw")) {
    return mkldnn::memory::format::nchw;
  } else if (!format->compare("nchw16c")) {
    return mkldnn::memory::format::nChw16c;
  } else if (!format->compare("nchw8c")) {
    return mkldnn::memory::format::nChw8c;
  } else if (!format->compare("nhwc")) {
    return mkldnn::memory::format::nhwc;
  } else {
    return mkldnn::memory::format::any;
  }
}

T
tensor-tang 已提交
160 161
}  // namespace platform
}  // namespace paddle