“730d2b54cdcf83263126ee7c2c935dbdcd2b9a3d”上不存在“develop/doc_cn/git@gitcode.net:BaiXuePrincess/Paddle.git”
test_sequence_expand.py 4.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
wanghaoshuang 已提交
15 16 17 18 19
import unittest
import numpy as np
from op_test import OpTest


W
wanghaoshuang 已提交
20
class TestSequenceExpand(OpTest):
W
wanghaoshuang 已提交
21
    def set_data(self):
D
dzhwinter 已提交
22 23
        x_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32')
        y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32')
W
wanghaoshuang 已提交
24 25
        y_lod = [[0, 1, 4, 8]]
        self.inputs = {'X': x_data, 'Y': (y_data, y_lod)}
W
wanghaoshuang 已提交
26 27

    def compute(self):
W
wanghaoshuang 已提交
28 29
        x = self.inputs['X']
        x_data, x_lod = x if type(x) == tuple else (x, None)
W
wanghaoshuang 已提交
30
        y_data, y_lod = self.inputs['Y']
Y
yangyaming 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

        if hasattr(self, 'attrs'):
            ref_level = self.attrs['ref_level']
        else:
            ref_level = len(y_lod) - 1

        out = np.zeros(shape=((0, ) + x_data.shape[1:]), dtype=x_data.dtype)

        if x_lod is None:
            x_idx = [i for i in xrange(x_data.shape[0] + 1)]
        else:
            x_idx = x_lod[0]
            out_lod = [[0]]

        for i in xrange(1, len(y_lod[ref_level])):
            repeat_num = y_lod[ref_level][i] - y_lod[ref_level][i - 1]
            x_len = x_idx[i] - x_idx[i - 1]
            if repeat_num > 0:
                x_sub = x_data[x_idx[i - 1]:x_idx[i], :]
D
dzhwinter 已提交
50 51 52 53
                stacked_x_sub = x_sub
                for r in range(repeat_num - 1):
                    stacked_x_sub = np.vstack((stacked_x_sub, x_sub))
                out = np.vstack((out, stacked_x_sub))
Y
yangyaming 已提交
54 55 56 57 58 59 60 61
                if x_lod is not None:
                    for j in xrange(repeat_num):
                        out_lod[0].append(out_lod[0][-1] + x_len)

        if x_lod is None:
            self.outputs = {'Out': out}
        else:
            self.outputs = {'Out': (out, out_lod)}
W
wanghaoshuang 已提交
62 63

    def setUp(self):
W
wanghaoshuang 已提交
64
        self.op_type = 'sequence_expand'
W
wanghaoshuang 已提交
65 66 67 68 69 70
        self.set_data()
        self.compute()

    def test_check_output(self):
        self.check_output()

W
wanghaoshuang 已提交
71 72
    def test_check_grad(self):
        self.check_grad(["X"], "Out")
W
wanghaoshuang 已提交
73 74


W
wanghaoshuang 已提交
75
class TestSequenceExpandCase1(TestSequenceExpand):
W
wanghaoshuang 已提交
76 77 78 79
    def set_data(self):
        x_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32')
        x_lod = [[0, 2, 5]]
        y_data = np.random.uniform(0.1, 1, [13, 1]).astype('float32')
W
wanghaoshuang 已提交
80
        y_lod = [[0, 2, 5], [0, 2, 4, 7, 10, 13]]
Y
yangyaming 已提交
81 82
        self.inputs = {'X': x_data, 'Y': (y_data, y_lod)}
        self.attrs = {'ref_level': 0}
W
wanghaoshuang 已提交
83 84


W
wanghaoshuang 已提交
85
class TestSequenceExpandCase2(TestSequenceExpand):
W
wanghaoshuang 已提交
86 87 88 89
    def set_data(self):
        x_data = np.random.uniform(0.1, 1, [1, 2, 2]).astype('float32')
        x_lod = [[0, 1]]
        y_data = np.random.uniform(0.1, 1, [2, 2, 2]).astype('float32')
Y
yangyaming 已提交
90
        y_lod = [[0, 2], [0, 2]]
W
wanghaoshuang 已提交
91
        self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
Y
yangyaming 已提交
92
        self.attrs = {'ref_level': 0}
W
wanghaoshuang 已提交
93 94


W
wanghaoshuang 已提交
95
class TestSequenceExpandCase3(TestSequenceExpand):
W
wanghaoshuang 已提交
96 97 98 99 100 101 102 103
    def set_data(self):
        x_data = np.random.uniform(0.1, 1, [4, 1]).astype('float32')
        x_lod = [[0, 1, 2, 3, 4]]
        y_data = np.random.uniform(0.1, 1, [6, 1]).astype('float32')
        y_lod = [[0, 2, 4, 4, 6]]
        self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}


104 105
class TestSequenceExpandCase4(TestSequenceExpand):
    def set_data(self):
D
dzhwinter 已提交
106
        data = np.random.uniform(0.1, 1, [5 * 2, 1])
Y
yangyaming 已提交
107 108
        x_data = np.array(data).reshape([5, 2]).astype('float32')
        x_lod = [[0, 2, 5]]
D
dzhwinter 已提交
109 110
        y_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32')
        y_lod = [[0, 1, 3], [0, 1, 3]]
111 112 113
        self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}


W
wanghaoshuang 已提交
114 115
if __name__ == '__main__':
    unittest.main()