smooth_l1_loss_op.h 6.7 KB
Newer Older
Y
yangyaming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
18
#include "paddle/platform/hostdevice.h"
Y
yangyaming 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename T>
32 33
struct SmoothL1LossForward {
  HOSTDEVICE SmoothL1LossForward(const T& sigma2) : sigma2(sigma2) {}
Y
yangyaming 已提交
34

35
  HOSTDEVICE T operator()(const T& val) const {
Y
yangyaming 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    T abs_val = std::abs(val);
    if (abs_val < 1.0 / sigma2) {
      return 0.5 * val * val * sigma2;
    } else {
      return abs_val - 0.5 / sigma2;
    }
  }

  T sigma2;
};

template <typename Place, typename T, typename AttrType = T>
class SmoothL1LossKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in0 = context.Input<Tensor>("X");
    auto* in1 = context.Input<Tensor>("Y");
    auto* in2 = context.Input<Tensor>("InsideWeight");
    auto* in3 = context.Input<Tensor>("OutsideWeight");
    auto* out0 = context.Output<Tensor>("diff");
    auto* out1 = context.Output<Tensor>("Out");

    out0->mutable_data<T>(context.GetPlace());
    out1->mutable_data<T>(context.GetPlace());
    auto place = context.GetEigenDevice<Place>();

Y
yangyaming 已提交
62
    auto sigma = static_cast<T>(context.op().Attr<AttrType>("sigma"));
Y
yangyaming 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    T sigma2 = sigma * sigma;
    bool has_weight = (in2 != nullptr) && (in3 != nullptr);

    auto x = EigenVector<T>::Flatten(*in0);
    auto y = EigenVector<T>::Flatten(*in1);
    auto diff = EigenVector<T>::Flatten(*out0);

    diff.device(place) = x - y;
    // multiply inside weight
    if (has_weight) {
      auto inside_weight = EigenVector<T>::Flatten(*in2);
      // cache diff, reused in bp
      diff.device(place) = diff * inside_weight;
    }

    auto in_counts = framework::product(in0->dims());
    Tensor paddle_errors;
    paddle_errors.mutable_data<T>({static_cast<int>(in_counts)},
                                  context.GetPlace());
    auto errors = EigenVector<T>::Flatten(paddle_errors);
    // apply smooth l1 forward
84
    errors.device(place) = diff.unaryExpr(SmoothL1LossForward<T>(sigma2));
Y
yangyaming 已提交
85 86 87 88 89 90

    // multiply outside weight
    if (has_weight) {
      auto outside_weight = EigenVector<T>::Flatten(*in3);
      errors.device(place) = errors * outside_weight;
    }
Y
yangyaming 已提交
91
    auto loss = EigenVector<T>::Flatten(*out1);
Y
yangyaming 已提交
92
    // first dimension of 'X' is the number of samples
Y
yangyaming 已提交
93 94 95 96 97
    auto mat_dims =
        framework::make_ddim({static_cast<int>(in0->dims()[0]),
                              static_cast<int>(in_counts / in0->dims()[0])});
    auto errors_mat_view = EigenMatrix<T>::From(paddle_errors, mat_dims);
    loss.device(place) = errors_mat_view.sum(Eigen::array<int, 1>({{1}}));
Y
yangyaming 已提交
98 99 100 101 102
  }
};

template <typename T>
struct SmoothL1LossBackward {
103
  HOSTDEVICE SmoothL1LossBackward(const T& sigma2) : sigma2(sigma2) {}
Y
yangyaming 已提交
104

105
  HOSTDEVICE T operator()(const T& val) const {
Y
yangyaming 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    T abs_val = std::abs(val);
    if (abs_val < 1.0 / sigma2) {
      return sigma2 * val;
    } else {
      return (0 < val) - (val < 0);
    }
  }

  T sigma2;
};

template <typename Place, typename T, typename AttrType = T>
class SmoothL1LossGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in0 = context.Input<Tensor>("InsideWeight");
    auto* in1 = context.Input<Tensor>("OutsideWeight");
    auto* in2 = context.Input<Tensor>("diff");
    auto* og = context.Input<Tensor>(framework::GradVarName("Out"));
Y
yangyaming 已提交
125
    auto sigma = static_cast<T>(context.op().Attr<AttrType>("sigma"));
Y
yangyaming 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    T sigma2 = sigma * sigma;
    bool has_weight = (in0 != nullptr) && (in1 != nullptr);

    auto place = context.GetEigenDevice<Place>();

    auto in_dims = in2->dims();
    auto counts = framework::product(in_dims);
    auto cols = counts / in_dims[0];
    auto mat_dims = framework::make_ddim(
        {static_cast<int>(in_dims[0]), static_cast<int>(cols)});

    Tensor paddle_diff;
    paddle_diff.mutable_data<T>({static_cast<int>(counts)}, context.GetPlace());
    auto diff = EigenVector<T>::Flatten(paddle_diff);
    // apply smooth l1 backwoard
    diff.device(place) = EigenVector<T>::Flatten(*in2).unaryExpr(
        SmoothL1LossBackward<T>(sigma2));

    auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
    auto* out1 = context.Output<Tensor>(framework::GradVarName("Y"));

    // compute weights
    Tensor paddle_weights;
    paddle_weights.mutable_data<T>(mat_dims, context.GetPlace());
    auto weights = EigenMatrix<T>::From(paddle_weights);
    // initialize to 1.0
    if (platform::is_cpu_place(context.GetPlace())) {
      weights.setConstant(static_cast<T>(1.0));
    } else {
      Tensor paddle_cpu_weights;
      paddle_cpu_weights.mutable_data<T>(mat_dims, platform::CPUPlace());
      EigenMatrix<T>::From(paddle_cpu_weights).setConstant(static_cast<T>(1.0));
      paddle_weights.CopyFrom<T>(paddle_cpu_weights, context.GetPlace());
    }
    if (has_weight) {
      auto inside_weight = EigenMatrix<T>::From(*in0, mat_dims);
      auto outside_weight = EigenMatrix<T>::From(*in1, mat_dims);
      weights.device(place) = inside_weight * outside_weight;
    }

    // compute gradients
    auto out_grad = EigenMatrix<T>::From(*og);
    auto diff_mat_view = EigenMatrix<T>::From(paddle_diff, mat_dims);
Y
yangyaming 已提交
169 170 171
    auto gradients = out_grad.broadcast(
                         Eigen::array<int, 2>({{1, static_cast<int>(cols)}})) *
                     weights * diff_mat_view;
Y
yangyaming 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

    if (out0) {
      out0->mutable_data<T>(context.GetPlace());
      auto x_grad = EigenMatrix<T>::From(*out0, mat_dims);
      x_grad.device(place) = gradients;
    }

    if (out1) {
      out1->mutable_data<T>(context.GetPlace());
      auto y_grad = EigenMatrix<T>::From(*out1, mat_dims);
      y_grad.device(place) = -1 * gradients;
    }
  }
};

}  // namespace operators
}  // namespace paddle