api_impl.cc 10.7 KB
Newer Older
X
Xin Pan 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xin Pan 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
X
Xin Pan 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xin Pan 已提交
14 15 16 17 18 19 20 21 22

#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

23
#include "paddle/fluid/framework/feed_fetch_method.h"
L
Luo Tao 已提交
24
#include "paddle/fluid/inference/api/api_impl.h"
Y
Yan Chunwei 已提交
25
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
26
#include "paddle/fluid/inference/api/helper.h"
27
#include "paddle/fluid/memory/memcpy.h"
28
#include "paddle/fluid/platform/cpu_helper.h"
29 30 31
#include "paddle/fluid/platform/profiler.h"

DEFINE_bool(profile, false, "Turn on profiler for fluid");
X
Xin Pan 已提交
32 33

namespace paddle {
34 35 36 37 38 39 40 41 42 43
namespace {
using paddle::inference::Timer;

template <class T>
std::string num2str(T a) {
  std::stringstream istr;
  istr << a;
  return istr.str();
}
}  // namespace
X
Xin Pan 已提交
44

45 46 47 48
void NativePaddlePredictor::PrepareFeedFetch() {
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
T
tensor-tang 已提交
49
      if (feeds_.size() <= static_cast<size_t>(idx)) {
50 51 52 53 54 55
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
T
tensor-tang 已提交
56
      if (fetchs_.size() <= static_cast<size_t>(idx)) {
57 58 59 60 61 62 63
        fetchs_.resize(idx + 1);
      }
      fetchs_[idx] = op;
    }
  }
}

T
tensor-tang 已提交
64 65
bool NativePaddlePredictor::Init(
    std::shared_ptr<framework::Scope> parent_scope) {
66
  VLOG(3) << "Predictor::init()";
D
dzhwinter 已提交
67
#if !defined(_WIN32)
68 69 70 71 72 73 74 75
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";

    auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll
                                           : platform::ProfilerState::kCPU;
    platform::EnableProfiler(tracking_device);
  }
D
dzhwinter 已提交
76
#endif
77

78
  // no matter with or without MKLDNN
L
luotao1 已提交
79
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
80

Y
Yan Chunwei 已提交
81
  if (config_.use_gpu) {
X
Xin Pan 已提交
82 83 84 85
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
T
tensor-tang 已提交
86 87 88
  if (parent_scope) {
    scope_ = parent_scope;
    sub_scope_ = &(parent_scope->NewScope());
T
tensor-tang 已提交
89
    PADDLE_ENFORCE_NOT_NULL(sub_scope_, "create sub scope fail");
90 91 92 93
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
  }
94

X
Xin Pan 已提交
95
  executor_.reset(new paddle::framework::Executor(place_));
96

X
Xin Pan 已提交
97 98 99 100
  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
101 102
    inference_program_ = paddle::inference::Load(executor_.get(), scope_.get(),
                                                 config_.model_dir);
X
Xin Pan 已提交
103 104 105 106 107 108 109
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
  } else {
Y
Yan Chunwei 已提交
110
    LOG(ERROR) << "fail to load inference model from " << config_.model_dir;
X
Xin Pan 已提交
111 112
    return false;
  }
113

X
Xin Pan 已提交
114
  ctx_ = executor_->Prepare(*inference_program_, 0);
115 116
  executor_->CreateVariables(*inference_program_,
                             sub_scope_ ? sub_scope_ : scope_.get(), 0);
Y
Yan Chunwei 已提交
117

X
Xin Pan 已提交
118
  // Get the feed_target_names and fetch_target_names
119
  PrepareFeedFetch();
X
Xin Pan 已提交
120 121 122
  return true;
}

123
NativePaddlePredictor::~NativePaddlePredictor() {
D
dzhwinter 已提交
124
#if !defined(_WIN32)
125 126 127 128
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
D
dzhwinter 已提交
129
#endif
130 131 132
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
L
Luo Tao 已提交
133
}
134

Y
Yan Chunwei 已提交
135
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
136 137
                                std::vector<PaddleTensor> *output_data,
                                int batch_size) {
138
  VLOG(3) << "Predictor::predict";
X
Xin Pan 已提交
139 140 141
  Timer timer;
  timer.tic();
  // set feed variable
142 143
  framework::Scope *scope = sub_scope_ != nullptr ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
X
Xin Pan 已提交
144 145 146 147 148
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  // Run the inference program
  // if share variables, we need not create variables
149
  VLOG(4) << "Run prepared context";
150 151
  executor_->RunPreparedContext(ctx_.get(), scope,
                                false, /* don't create local scope each time*/
152
                                false /* don't create variable each time */);
153
  VLOG(4) << "Finish prepared context";
154 155
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
156
    LOG(ERROR) << "fail to get fetches";
X
Xin Pan 已提交
157 158
    return false;
  }
M
minqiyang 已提交
159
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
160 161 162 163

  // Fix TensorArray reuse not cleaned bug.
  tensor_array_batch_cleaner_.CollectTensorArrays(scope_.get());
  tensor_array_batch_cleaner_.ResetTensorArray();
X
Xin Pan 已提交
164 165 166
  return true;
}

Y
Yan Chunwei 已提交
167
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
168
  VLOG(3) << "Predictor::clone";
Y
Yan Chunwei 已提交
169 170
  std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));

171
  if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(scope_)) {
Y
Yan Chunwei 已提交
172
    LOG(ERROR) << "fail to call Init";
X
Xin Pan 已提交
173 174
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
175 176 177 178
#ifdef __clang__
  // fix clang compile error
  return cls;
#else
179 180
  // fix manylinux compile error.
  return std::move(cls);
J
Fix mac  
JiabinYang 已提交
181
#endif
X
Xin Pan 已提交
182 183
}

Y
Yan Chunwei 已提交
184
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
185
                                    framework::Scope *scope) {
186
  VLOG(3) << "Predictor::set_feed";
187
  if (inputs.size() != feeds_.size()) {
188 189
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
X
Xin Pan 已提交
190 191
    return false;
  }
192
  for (size_t i = 0; i < inputs.size(); ++i) {
193 194
    framework::LoDTensor input;
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
X
Xin Pan 已提交
195 196
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
197
      input_ptr = input.mutable_data<int64_t>(ddim, place_);
X
Xin Pan 已提交
198
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
199
      input_ptr = input.mutable_data<float>(ddim, place_);
X
Xin Pan 已提交
200 201 202 203 204
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    if (platform::is_cpu_place(place_)) {
      // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
      std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
                  inputs[i].data.length());
    } else {
#ifdef PADDLE_WITH_CUDA
      auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
      memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                   platform::CPUPlace(), inputs[i].data.data(),
                   inputs[i].data.length(),
                   0);  // stream 0 for sync copy
#else
      PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
    }

Y
Yan Chunwei 已提交
221 222 223 224 225 226
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
227 228
    int idx = -1;
    if (config_.specify_input_name) {
X
polish  
Xin Pan 已提交
229
      idx = feed_names_[inputs[i].name];
230 231 232 233
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
X
Xin Pan 已提交
234 235 236
  }
  return true;
}
L
luotao1 已提交
237 238 239
template <typename T>
void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                        PaddleTensor *output) {
240 241 242 243 244 245 246 247 248 249 250 251 252 253
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
L
luotao1 已提交
254 255
  }
}
X
Xin Pan 已提交
256

257 258
bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                     framework::Scope *scope) {
259
  VLOG(3) << "Predictor::get_fetch";
260 261 262
  outputs->resize(fetchs_.size());
  for (size_t i = 0; i < fetchs_.size(); ++i) {
    int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
L
luotao1 已提交
263 264
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
265
        framework::GetFetchVariable(*scope, "fetch", idx);
L
luotao1 已提交
266 267 268 269 270 271 272 273
    auto type = fetch.type();
    auto output = &(outputs->at(i));
    if (type == typeid(float)) {
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
    } else if (type == typeid(int64_t)) {
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
X
Xin Pan 已提交
274
    } else {
L
luotao1 已提交
275
      LOG(ERROR) << "unknown type, only support float32 and int64 now.";
Y
Yan Chunwei 已提交
276
    }
X
Xin Pan 已提交
277 278 279 280
  }
  return true;
}

281
template <>
282 283
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    NativeConfig, PaddleEngineKind::kNative>(const NativeConfig &config) {
284
  VLOG(3) << "create NativePaddlePredictor";
Y
Yan Chunwei 已提交
285 286
  if (config.use_gpu) {
    // 1. GPU memeroy
287
    PADDLE_ENFORCE_GT(
288
        config.fraction_of_gpu_memory, 0.f,
289
        "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
290
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
Y
Yan Chunwei 已提交
291 292 293 294 295
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
296
                         num2str<float>(config.fraction_of_gpu_memory);
Y
Yan Chunwei 已提交
297
      flags.push_back(flag);
298
      VLOG(3) << "set flag: " << flag;
Y
Yan Chunwei 已提交
299 300
      framework::InitGflags(flags);
    }
X
Xin Pan 已提交
301
  }
302

Y
Yan Chunwei 已提交
303
  std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
T
tensor-tang 已提交
304
  if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
X
Xin Pan 已提交
305 306
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
307
#ifdef __clang__
J
Jiabin Yang 已提交
308
  // fix clang compile error
J
Fix mac  
JiabinYang 已提交
309 310
  return predictor;
#else
311
  return std::move(predictor);
J
Fix mac  
JiabinYang 已提交
312
#endif
X
Xin Pan 已提交
313 314
}

Y
Yan Chunwei 已提交
315 316 317 318 319 320
template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<NativeConfig>(
    const NativeConfig &config) {
  return CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
}

X
Xin Pan 已提交
321
}  // namespace paddle