momentum_op_xpu.cc 3.1 KB
Newer Older
C
Chengmo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include <string>
#include "paddle/fluid/operators/optimizers/sgd_op.h"
17
#include "paddle/fluid/platform/device/device_wrapper.h"
C
Chengmo 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class MomentumOpXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    T mu = static_cast<T>(ctx.Attr<float>("mu"));
    bool use_nesterov = ctx.Attr<bool>("use_nesterov");

    auto learning_rate = ctx.Input<framework::Tensor>("LearningRate");
    auto param = ctx.Input<framework::Tensor>("Param");
    auto param_out = ctx.Output<framework::Tensor>("ParamOut");
    auto* velocity = ctx.Input<framework::Tensor>("Velocity");
    auto velocity_out = ctx.Output<framework::Tensor>("VelocityOut");
    param_out->mutable_data<T>(ctx.GetPlace());
    velocity_out->mutable_data<T>(ctx.GetPlace());
    auto* lr = learning_rate->data<T>();

37 38 39 40 41 42 43
    auto regularization_method = ctx.Attr<std::string>("regularization_method");
    auto regularization_coeff = ctx.Attr<float>("regularization_coeff");
    if (regularization_method != "l2_decay") {
      // only support l2_decay
      regularization_coeff = 0.0f;
    }

C
Chengmo 已提交
44 45 46 47 48 49 50 51 52 53 54
    auto* grad_var = ctx.InputVar("Grad");
    PADDLE_ENFORCE_EQ(grad_var->IsType<framework::LoDTensor>(), true,
                      platform::errors::PermissionDenied(
                          "Unsupported Variable Type of Param & Grad in "
                          "MomentumOp-XPU. Excepted "
                          "LodTensor, But received [%s] and [%s]",
                          paddle::framework::ToTypeName(grad_var->Type())));

    auto grad = ctx.Input<framework::Tensor>("Grad");

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
55 56 57 58

    // int momentum(Context* ctx, const T* param, const T* velocity, const T*
    // grad, T* param_out, T* velocity_out, int len, const float* lr, int
    // use_nesterov, float mu, float l2_weight_decay);
59 60 61
    int r = xpu::momentum(dev_ctx.x_context(), param->data<float>(),
                          velocity->data<float>(), grad->data<float>(),
                          param_out->data<float>(), velocity_out->data<float>(),
62 63 64
                          param_out->numel(), lr, use_nesterov, mu,
                          regularization_coeff);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "momentum");
C
Chengmo 已提交
65 66 67 68 69 70 71 72 73 74
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
    momentum,
    ops::MomentumOpXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif