test_imperative_optimizer.py 8.5 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
M
minqiyang 已提交
18
import six
M
minqiyang 已提交
19

M
minqiyang 已提交
20
import paddle
M
minqiyang 已提交
21 22
import paddle.fluid as fluid
from paddle.fluid import core
M
minqiyang 已提交
23
from paddle.fluid.optimizer import SGDOptimizer
24 25
from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC
from paddle.fluid.imperative.base import to_variable
M
minqiyang 已提交
26
from test_imperative_base import new_program_scope
27 28


X
Xin Pan 已提交
29
class SimpleImgConvPool(fluid.imperative.Layer):
30 31
    def __init__(self,
                 num_channels,
32
                 num_filters,
M
minqiyang 已提交
33
                 filter_size,
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
        super(SimpleImgConvPool, self).__init__()

        self._conv2d = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)
M
minqiyang 已提交
68

69 70 71 72
    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
M
minqiyang 已提交
73 74


X
Xin Pan 已提交
75
class MNIST(fluid.imperative.Layer):
76
    def __init__(self, param_attr=None, bias_attr=None):
M
minqiyang 已提交
77
        super(MNIST, self).__init__()
M
minqiyang 已提交
78

79
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
M
minqiyang 已提交
80
            1, 20, 5, 2, 2, act="relu")
81 82

        self._simple_img_conv_pool_2 = SimpleImgConvPool(
M
minqiyang 已提交
83
            20, 50, 5, 2, 2, act="relu")
84

M
minqiyang 已提交
85
        pool_2_shape = 50 * 4 * 4
86 87
        SIZE = 10
        scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
M
minqiyang 已提交
88
        self._fc = FC(10,
89 90
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.NormalInitializer(
M
minqiyang 已提交
91 92
                              loc=0.0, scale=scale)),
                      act="softmax")
M
minqiyang 已提交
93 94

    def forward(self, inputs):
95 96
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
97
        x = self._fc(x)
M
minqiyang 已提交
98 99 100 101
        return x


class TestImperativeMnist(unittest.TestCase):
M
minqiyang 已提交
102
    def test_mnist_float32(self):
M
minqiyang 已提交
103
        seed = 90
M
minqiyang 已提交
104
        batch_num = 100000
M
minqiyang 已提交
105
        with fluid.imperative.guard():
M
minqiyang 已提交
106 107 108
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
109
            mnist = MNIST()
M
minqiyang 已提交
110
            sgd = SGDOptimizer(learning_rate=1e-3)
M
minqiyang 已提交
111 112 113
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(), batch_size=128)

M
minqiyang 已提交
114
            dy_param_init_value = {}
M
minqiyang 已提交
115
            for batch_id, data in enumerate(train_reader()):
M
minqiyang 已提交
116
                if batch_id >= batch_num:
M
minqiyang 已提交
117 118
                    break

M
minqiyang 已提交
119
                dy_x_data = np.array(
M
minqiyang 已提交
120 121 122
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    128, 1)
123

M
minqiyang 已提交
124
                img = to_variable(dy_x_data)
125 126 127
                label = to_variable(y_data)
                label._stop_gradient = True

M
minqiyang 已提交
128 129
                print("forward start")

M
minqiyang 已提交
130
                cost = mnist(img)
M
minqiyang 已提交
131 132
                loss = fluid.layers.cross_entropy(cost, label)
                avg_loss = fluid.layers.mean(loss)
M
minqiyang 已提交
133 134
                #  dy_out = avg_loss._numpy()
                print("forward end")
M
minqiyang 已提交
135

M
minqiyang 已提交
136 137 138 139
                #  if batch_id == 0:
                    #  for param in fluid.default_main_program().global_block(
                    #  ).all_parameters():
                        #  dy_param_init_value[param.name] = param._numpy()
M
minqiyang 已提交
140

M
minqiyang 已提交
141
                avg_loss._backward()
M
minqiyang 已提交
142

M
minqiyang 已提交
143
                print("backward end")
M
minqiyang 已提交
144

M
minqiyang 已提交
145
                sgd.minimize(avg_loss)
M
minqiyang 已提交
146

M
minqiyang 已提交
147
                print("sgd end")
M
minqiyang 已提交
148

M
minqiyang 已提交
149
                mnist.clear_gradients()
M
minqiyang 已提交
150

M
minqiyang 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
                import gc
                for name, var in fluid.default_main_program().global_block().vars.items():
                    if not var.persistable:
                        fluid.default_main_program().global_block()._remove_var(name)
                        #  var._ivar._clear_values()
                for op in fluid.default_main_program().global_block().ops:
                    fluid.default_main_program().global_block()._remove_op(op.idx)

                assert len(gc.get_referrers(avg_loss)) == 1

                print("clear end")
                print("ivar ref ", gc.get_referrers(gc.get_referrers(avg_loss._ivar)[0])[0].__class__.__name__)
                print("ivar ref ", gc.get_referrers(gc.get_referrers(avg_loss._ivar)[1])[0].__class__.__name__)

                #  dy_param_value = {}
                #  for param in fluid.default_main_program().global_block(
                #  ).all_parameters():
                    #  dy_param_value[param.name] = param._numpy()

        #  with new_program_scope():
            #  fluid.default_startup_program().random_seed = seed
            #  fluid.default_main_program().random_seed = seed

            #  exe = fluid.Executor(fluid.CPUPlace(
            #  ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

            #  mnist = MNIST()
            #  sgd = SGDOptimizer(learning_rate=1e-3)
            #  train_reader = paddle.batch(
                #  paddle.dataset.mnist.train(), batch_size=128)

            #  img = fluid.layers.data(
                #  name='pixel', shape=[1, 28, 28], dtype='float32')
            #  label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            #  cost = mnist(img)
            #  loss = fluid.layers.cross_entropy(cost, label)
            #  avg_loss = fluid.layers.mean(loss)
            #  sgd.minimize(avg_loss)

            #  # initialize params and fetch them
            #  static_param_init_value = {}
            #  static_param_name_list = []
            #  for param in fluid.default_startup_program().global_block(
            #  ).all_parameters():
                #  static_param_name_list.append(param.name)

            #  out = exe.run(fluid.default_startup_program(),
                          #  fetch_list=static_param_name_list)

            #  for i in range(len(static_param_name_list)):
                #  static_param_init_value[static_param_name_list[i]] = out[i]

            #  for batch_id, data in enumerate(train_reader()):
                #  if batch_id >= batch_num:
                    #  break

                #  static_x_data = np.array(
                    #  [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                #  y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    #  [128, 1])

                #  fetch_list = [avg_loss.name]
                #  fetch_list.extend(static_param_name_list)
                #  out = exe.run(fluid.default_main_program(),
                              #  feed={"pixel": static_x_data,
                                    #  "label": y_data},
                              #  fetch_list=fetch_list)

                #  static_param_value = {}
                #  static_out = out[0]
                #  for i in range(1, len(out)):
                    #  static_param_value[static_param_name_list[i - 1]] = out[i]

        #  for key, value in six.iteritems(static_param_init_value):
            #  self.assertTrue(np.allclose(value, dy_param_init_value[key]))

        #  self.assertTrue(np.allclose(static_out, dy_out))

        #  for key, value in six.iteritems(static_param_value):
            #  self.assertTrue(np.allclose(value, dy_param_value[key]))
M
minqiyang 已提交
231 232 233 234


if __name__ == '__main__':
    unittest.main()