elementwise_mkldnn_op.h 14.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <string>
17 18 19
#include <unordered_map>

#include "paddle/fluid/framework/data_layout_transform.h"
20 21
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
22 23 24 25 26
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

27 28 29
using dnnl::memory;
using dnnl::primitive;
using dnnl::stream;
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
using framework::DataLayout;
using framework::Tensor;

inline std::vector<int64_t> CalculateBroadcastedDims(const Tensor* x,
                                                     const Tensor* y) {
  const auto src_tz = phi::vectorize(x->dims());
  const auto dst_tz = phi::vectorize(y->dims());

  size_t j = 0;
  std::vector<int64_t> dst_tz_ex(src_tz.size(), 1);
  for (size_t i = 0; i < src_tz.size(); ++i) {
    dst_tz_ex[i] = (src_tz[i] != dst_tz[j]) ? 1 : dst_tz[j++];
    if (j == dst_tz.size()) break;
  }

  return dst_tz_ex;
}
47 48 49

template <typename T, dnnl::algorithm BINARY_OP>
class EltwiseMKLDNNKernel : public framework::OpKernel<T> {
50 51 52 53 54 55 56 57 58 59 60 61 62 63
 private:
  dnnl::post_ops get_post_ops(const framework::ExecutionContext& ctx) const {
    dnnl::post_ops post_operations;
    if (ctx.HasAttr("activation_type")) {
      const float scale = ctx.HasAttr("activation_scale")
                              ? ctx.Attr<float>("activation_scale")
                              : 1.0f;
      const float alpha = ctx.HasAttr("activation_alpha")
                              ? ctx.Attr<float>("activation_alpha")
                              : 0.0f;
      const float beta = ctx.HasAttr("activation_beta")
                             ? ctx.Attr<float>("activation_beta")
                             : 0.0f;

64 65
      const auto activation_algorithm = platform::AcquireActivationAlgorithm(
          ctx.Attr<std::string>("activation_type"));
66

67
      post_operations.append_eltwise(scale, activation_algorithm, alpha, beta);
68 69 70 71
    }
    return post_operations;
  }

72 73 74 75 76 77
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

78 79
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
80 81 82 83 84 85 86
    auto* z = ctx.Output<Tensor>("Out");

    float scale_x = ctx.Attr<float>("Scale_x");
    float scale_y = ctx.Attr<float>("Scale_y");
    float scale_o = ctx.Attr<float>("Scale_out");
    int axis = ctx.Attr<int>("axis");

87 88 89 90 91 92 93 94 95 96 97
    platform::BinaryMKLDNNHandler<T> handler(BINARY_OP,
                                             axis,
                                             mkldnn_engine,
                                             ctx.GetPlace(),
                                             x,
                                             y,
                                             z,
                                             scale_x,
                                             scale_y,
                                             scale_o,
                                             get_post_ops(ctx));
98

99 100 101 102 103 104
    // oneDNN's binary is optimized for broadcasting y into x, so in other case
    // we have to swap tensors to achieve optimal performance
    if (x->numel() < y->numel()) {
      std::swap(x, y);
    }

105 106
    const auto src_x_memory = handler.AcquireSrcMemory(x);
    const auto src_y_memory = handler.AcquireSecondSrcMemory(y);
107 108 109 110 111 112 113 114 115
    // (jczaja) For Inplace src and dst should be the same memory object.
    // So x should share buffer with z. But UT mechanics is testing inplace
    // execution for this op not checking that x can be bradcasted to match in
    // shape y tensor.
    // This is wrong as when x is to be broadcasted then z(out) will match the
    // shape of y which is bigger than x. Hence if x is smaller in shape than z
    // and they share a buffer (of
    // shape x) then this buffer is not big enough to hold result of elementwise
    // operation.
116 117
    const bool reuse_x_memopry =
        x->numel() == z->numel() && x->IsSharedBufferWith(*z);
118
    std::shared_ptr<dnnl::memory> dst_memory;
119 120 121 122 123 124 125 126 127 128 129 130 131
    if (reuse_x_memopry) {
      dst_memory = src_x_memory;
      // NOTE(chenfeiyu): when the output reuses memory from other tensor rather
      // than allocate its own, it's still need to take care of its data type.
      // Unfortunately, paddle's operator only infers the output' shape, but not
      // the data type. mutable_data<T> takes care of allocation and data type
      // normally, but if the memory is already allocated and there is no need
      // to re-allocate, it just set the data type. So this it added there to
      // get the right data type.
      z->mutable_data<T>(ctx.GetPlace());
    } else {
      dst_memory = handler.AcquireDstMemory(z);
    }
132 133 134

    const auto binary_prim = handler.AcquireForwardPrimitive();

135
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
136 137 138 139 140 141 142 143 144

    const std::unordered_map<int, dnnl::memory> args = {
        {DNNL_ARG_SRC_0, *src_x_memory},
        {DNNL_ARG_SRC_1, *src_y_memory},
        {DNNL_ARG_DST, *dst_memory}};

    binary_prim->execute(astream, args);
    astream.wait();

145
    z->set_mem_desc(dst_memory->get_desc());
146 147
  }
};
148

149 150 151 152 153 154
template <typename T, dnnl::algorithm BINARY_OP>
class EltwiseMKLDNNGradKernel : public ElemwiseGradKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    ElemwiseGradKernel<T>::Compute(ctx);
    using Tensor = framework::Tensor;
155

156 157 158
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();
159

160 161 162 163 164 165 166 167
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));

168 169 170 171 172 173 174
    // oneDNN's binary is optimized for broadcasting y into x, so in other case
    // we have to swap tensors to achieve optimal performance
    if (x->numel() < y->numel()) {
      std::swap(x, y);
      std::swap(dx, dy);
    }

175 176 177 178 179 180
    int axis = ctx.Attr<int>("axis");

    auto tz = phi::vectorize<int64_t>(dout->dims());
    auto proto_type_dout = framework::TransToProtoVarType(dout->dtype());

    platform::ReorderMKLDNNHandler reorder_handler(
181 182 183
        tz,
        proto_type_dout,
        framework::ToMKLDNNDataType(proto_type_dout),
184 185 186
        onednn_engine);

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
187
        dout->mem_desc(), platform::to_void_cast(dout->data<T>()));
188 189 190 191 192 193 194 195 196

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

    if (dx) {
      std::shared_ptr<dnnl::memory> dst_memory;

      // elementwise_add & elementwise_sub
      if (BINARY_OP == dnnl::algorithm::binary_add ||
          BINARY_OP == dnnl::algorithm::binary_sub) {
197 198
        dst_memory = reorder_handler.AcquireDstMemory(
            dx, dout->mem_desc(), ctx.GetPlace());
199 200 201
        auto reorder_p =
            reorder_handler.AcquireReorder(dst_memory, reorder_src_memory_p);
        platform::RecordEvent record_reorder(
202 203 204
            "int_reorder",
            platform::TracerEventType::UserDefined,
            2,
205 206 207
            platform::EventRole::kUniqueOp);

        reorder_p->execute(astream, *reorder_src_memory_p, *dst_memory);
208
      } else {  // elementwise_mul & elementwise_div
209 210 211 212 213 214 215 216 217 218
        platform::BinaryMKLDNNHandler<T> binary_handler(BINARY_OP,
                                                        axis,
                                                        onednn_engine,
                                                        ctx.GetPlace(),
                                                        dout,
                                                        y,
                                                        dx,
                                                        1.0f,
                                                        1.0f,
                                                        1.0f);
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

        const auto src_dout_memory = binary_handler.AcquireSrcMemory(dout);
        const auto src_y_memory = binary_handler.AcquireSecondSrcMemory(y);
        dst_memory = binary_handler.AcquireDstMemory(dx);

        const auto binary_prim = binary_handler.AcquireForwardPrimitive();

        const std::unordered_map<int, dnnl::memory> args = {
            {DNNL_ARG_SRC_0, *src_dout_memory},
            {DNNL_ARG_SRC_1, *src_y_memory},
            {DNNL_ARG_DST, *dst_memory}};

        binary_prim->execute(astream, args);
      }
      astream.wait();

235
      dx->set_mem_desc(dst_memory->get_desc());
236 237 238 239 240 241 242 243 244 245 246 247
    }

    if (dy) {
      dnnl::primitive_attr broadcast_reduction_attr;
      std::shared_ptr<dnnl::memory> broadcast_src_memory;
      std::shared_ptr<dnnl::memory> dst_memory;

      // elementwise_add & elementwise_sub
      if (BINARY_OP == dnnl::algorithm::binary_add ||
          BINARY_OP == dnnl::algorithm::binary_sub) {
        if (dout->dims() == dy->dims()) {
          auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
248
              dy, dout->mem_desc(), ctx.GetPlace());
249 250 251 252 253 254 255 256

          dnnl::primitive_attr reorder_attr;
          std::vector<float> scales(1);
          scales[0] = (BINARY_OP == dnnl::algorithm::binary_add) ? 1 : -1;
          reorder_attr.set_output_scales(0, scales);
          auto reorder_p = std::make_shared<dnnl::reorder>(
              *(reorder_src_memory_p), *(reorder_dst_memory_p), reorder_attr);
          platform::RecordEvent record_reorder(
257 258 259
              "int_reorder",
              platform::TracerEventType::UserDefined,
              2,
260
              platform::EventRole::kUniqueOp);
261 262
          reorder_p->execute(
              astream, *reorder_src_memory_p, *reorder_dst_memory_p);
263 264 265 266 267

          dst_memory = reorder_dst_memory_p;
        } else {
          broadcast_src_memory = reorder_src_memory_p;
        }
268
      } else {  // elementwise_mul & elementwise_div
269 270 271 272 273 274 275
        std::unordered_map<int, dnnl::memory> args;
        std::shared_ptr<dnnl::binary> binary_prim;
        std::shared_ptr<dnnl::memory> post_op_memory;
        std::shared_ptr<dnnl::memory> src_0_memory;
        std::shared_ptr<dnnl::memory> src_1_memory;

        platform::BinaryMKLDNNHandler<T> binary_handler(
276 277 278 279 280 281 282 283 284 285
            dnnl::algorithm::binary_mul,
            axis,
            onednn_engine,
            ctx.GetPlace(),
            dout,
            x,
            nullptr,
            1.0f,
            1.0f,
            1.0f);
286 287 288 289 290

        src_1_memory = binary_handler.AcquireSecondSrcMemory(x);

        if (BINARY_OP == dnnl::algorithm::binary_div) {
          platform::BinaryMKLDNNHandler<T> post_op_binary_handler(
291 292 293 294 295 296 297 298 299 300
              dnnl::algorithm::binary_div,
              axis,
              onednn_engine,
              ctx.GetPlace(),
              y,
              y,
              nullptr,
              1.0f,
              1.0f,
              1.0f);
301 302 303 304 305 306 307

          post_op_memory = post_op_binary_handler.AcquireSrcMemory(y);

          dnnl::post_ops po;
          po.append_binary(dnnl::algorithm::binary_div,
                           post_op_memory->get_desc());

308 309 310 311 312 313 314 315 316 317 318 319
          binary_handler =
              platform::BinaryMKLDNNHandler<T>(dnnl::algorithm::binary_mul,
                                               axis,
                                               onednn_engine,
                                               ctx.GetPlace(),
                                               dout,
                                               out,
                                               nullptr,
                                               -1.0f,
                                               1.0f,
                                               1.0f,
                                               po);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

          src_1_memory = binary_handler.AcquireSecondSrcMemory(out);
        }

        src_0_memory = binary_handler.AcquireSrcMemory(dout);

        const auto dst_dy_memory = (dout->dims() == dy->dims())
                                       ? binary_handler.AcquireDstMemory(dy)
                                       : binary_handler.AcquireDstMemory();

        binary_prim = binary_handler.AcquireForwardPrimitive();
        args = {{DNNL_ARG_SRC_0, *src_0_memory},
                {DNNL_ARG_SRC_1, *src_1_memory},
                {DNNL_ARG_DST, *dst_dy_memory}};

        if (BINARY_OP == dnnl::algorithm::binary_div)
          args.insert({DNNL_ARG_ATTR_MULTIPLE_POST_OP(0) | DNNL_ARG_SRC_1,
                       *post_op_memory});

        binary_prim->execute(astream, args);
        broadcast_src_memory = dst_dy_memory;
        dst_memory = dst_dy_memory;
      }
      astream.wait();

      if (dout->dims() != dy->dims()) {
        // Broadcasting
        if (BINARY_OP == dnnl::algorithm::binary_sub) {
          dnnl::post_ops po;
          po.append_eltwise(1.0f, dnnl::algorithm::eltwise_linear, -1.0f, 0);
          broadcast_reduction_attr.set_post_ops(po);
        }

        platform::ReductionMKLDNNHandler<T> reduction_handler(
354 355 356 357 358 359 360 361
            dnnl::algorithm::reduction_sum,
            0.0f,
            0.0f,
            onednn_engine,
            ctx.GetPlace(),
            dout,
            dy,
            CalculateBroadcastedDims(dout, dy),
362 363 364 365 366
            broadcast_reduction_attr);
        dst_memory = reduction_handler.AcquireDstMemory(dy);

        auto reduction_p = reduction_handler.AcquireForwardPrimitive();

367 368 369 370 371
        reduction_p->execute(astream,
                             {
                                 {DNNL_ARG_SRC, *broadcast_src_memory},
                                 {DNNL_ARG_DST, *dst_memory},
                             });
372
        astream.wait();
373 374
        dy->set_mem_desc(dst_memory->get_desc().reshape(
            phi::vectorize<int64_t>(dy->dims())));
375
      } else {
376
        dy->set_mem_desc(dst_memory->get_desc());
377 378 379 380
      }
    }
  }
};
381 382
}  // namespace operators
}  // namespace paddle