launch_utils.py 49.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import time
import os
import signal
import copy
import sys
import subprocess
22 23
import tempfile
import shutil
24
from contextlib import closing
X
xiongkun 已提交
25
import multiprocessing
26
import socket
27
import warnings
28
import six
W
WangXi 已提交
29
import struct
30
import json
31

32 33
import paddle
import paddle.fluid as fluid
J
Jiangxinz 已提交
34
from distutils.util import strtobool
X
xiongkun 已提交
35
import paddle.utils.cpp_extension.extension_utils as utils
36 37 38 39
logger = logging.getLogger("root")
logger.propagate = False


G
gongweibao 已提交
40
class DistributeMode():
41 42 43 44 45 46 47 48
    """
    There are various mode for fleetrun, each of them is designed for different model.
    """
    COLLECTIVE = 0
    PS = 1
    PS_HETER = 2


G
gongweibao 已提交
49
class DeviceMode():
50 51 52
    """
    Training devices type
    """
53
    UNKNOWN = -1
54 55 56
    CPU = 0
    GPU = 1
    KUNLUN = 2
57
    XPU = 2
58 59
    ASCEND_NPU = 3
    UNKNOWN = 3
60 61


62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
class Cluster(object):
    def __init__(self, hdfs):
        self.job_server = None
        self.pods = []
        self.hdfs = None
        self.job_stage_flag = None

    def __str__(self):
        return "job_server:{} pods:{} job_stage_flag:{} hdfs:{}".format(
            self.job_server, [str(pod) for pod in self.pods],
            self.job_stage_flag, self.hdfs)

    def __eq__(self, cluster):
        if len(self.pods) != len(cluster.pods):
            return False

        for a, b in zip(self.pods, cluster.pods):
            if a != b:
                return False

        if self.job_stage_flag != cluster.job_stage_flag:
            return False

        return True

    def __ne__(self, cluster):
        return not self.__eq__(cluster)

Z
zhangchunle 已提交
90
    def update_pods(self, cluster):
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        self.pods = copy.copy(cluster.pods)

    def trainers_nranks(self):
        return len(self.trainers_endpoints())

    def pods_nranks(self):
        return len(self.pods)

    def trainers_endpoints(self):
        r = []
        for pod in self.pods:
            for t in pod.trainers:
                r.append(t.endpoint)
        return r

106 107 108 109 110 111 112 113
    def world_device_ids(self):
        r = []
        for pod in self.pods:
            for t in pod.trainers:
                str_accelerators = [str(acc) for acc in t.accelerators]
                r.append(str_accelerators)
        return r

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    def pods_endpoints(self):
        r = []
        for pod in self.pods:
            ep = "{}:{}".format(pod.addr, pod.port)
            assert pod.port != None and pod.addr != None, "{} not a valid endpoint".format(
                ep)
            r.append(ep)
        return r

    def get_pod_by_id(self, pod_id):
        for pod in self.pods:
            if str(pod_id) == str(pod.id):
                return pod

        return None


class JobServer(object):
    def __init__(self):
        self.endpoint = None

    def __str__(self):
        return "{}".format(self.endpoint)

    def __eq__(self, j):
        return self.endpint == j.endpoint

    def __ne__(self, j):
        return not self == j


class Trainer(object):
    def __init__(self):
147
        self.accelerators = []
148 149 150 151
        self.endpoint = None
        self.rank = None

    def __str__(self):
152 153
        return "accelerator:{} endpoint:{} rank:{}".format(
            self.accelerators, self.endpoint, self.rank)
154 155

    def __eq__(self, t):
156
        if len(self.accelerators) != len(t.accelerators):
157 158 159 160 161 162
            return False

        if self.endpoint != t.endpoint or \
                self.rank != t.rank:
            return False

163
        for a, b in zip(self.accelerators, t.accelerators):
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
            if a != b:
                return False

        return True

    def __ne__(self, t):
        return not self == t

    def rank(self):
        return self.rank


class Pod(object):
    def __init__(self):
        self.rank = None
        self.id = None
        self.addr = None
        self.port = None
        self.trainers = []
183 184
        self.servers = []
        self.workers = []
185
        self.heter_workers = []
186 187
        self.accelerators = []
        self.device_mode = None
188 189

    def __str__(self):
190
        return "rank:{} id:{} addr:{} port:{} visible_accelerator:{} trainers:{} servers:{} \
191
            workers:{} heter_workers:{}".format(
192
            self.rank, self.id, self.addr, self.port, self.accelerators, [
193 194 195
                str(t) for t in self.trainers
            ], [str(s) for s in self.servers], [str(w) for w in self.workers],
            [str(h) for h in self.heter_workers])
196 197 198 199 200 201

    def __eq__(self, pod):
        if self.rank != pod.rank or \
                self.id != pod.id or \
                self.addr != pod.addr or \
                self.port != pod.port:
Z
zhangchunle 已提交
202
            logger.debug("pod {} != {}".format(self, pod))
203 204 205 206 207 208 209 210 211 212 213 214 215
            return False

        if len(self.trainers) != len(pod.trainers):
            logger.debug("trainers {} != {}".format(self.trainers,
                                                    pod.trainers))
            return False

        for i in range(len(self.trainers)):
            if self.trainers[i] != pod.trainers[i]:
                logger.debug("trainer {} != {}".format(self.trainers[i],
                                                       pod.trainers[i]))
                return False

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        if len(self.servers) != len(pod.servers):
            logger.debug("servers {} != {}".format(self.servers, pod.servers))
            return False

        for i in range(len(self.servers)):
            if self.servers[i] != pod.servers[i]:
                logger.debug("servers {} != {}".format(self.servers[i],
                                                       pod.servers[i]))
                return False

        if len(self.workers) != len(pod.workers):
            logger.debug("workers {} != {}".format(self.workers, pod.workers))
            return False

        for i in range(len(self.workers)):
            if self.workers[i] != pod.workers[i]:
                logger.debug("workers {} != {}".format(self.workers[i],
                                                       pod.workers[i]))
                return False

236 237 238 239 240 241 242 243 244 245 246
        return True

    def __ne__(self, pod):
        return not self == pod

    def parse_response(self, res_pods):
        pass

    def rank(self):
        return self.rank

247
    def get_visible_accelerators(self):
248
        r = ""
249
        for g in self.accelerators:
250 251
            r += "{},".format(g)

252
        assert r != "", "this pod {} can't see any accelerators".format(self)
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

        r = r[:-1]
        return r


def get_logger(log_level=20, name="root"):
    logger = logging.getLogger(name)
    logger.setLevel(log_level)

    log_handler = logging.StreamHandler()
    log_format = logging.Formatter(
        '%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s')
    log_handler.setFormatter(log_format)
    logger.addHandler(log_handler)

    return logger


271 272
def get_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
                devices_per_proc):
273
    assert type(trainer_endpoints) is list, "trainer_endpoints must be list"
274 275 276 277 278 279
    cluster = Cluster(hdfs=None)
    trainer_rank = 0
    for node_rank, ip in enumerate(node_ips):
        pod = Pod()
        pod.rank = node_rank
        pod.addr = ip
280 281
        pod.device_mode = device_mode

282
        cur_node_endpoints = trainer_endpoints[node_rank]
283
        # when use paddlecloud, endpoints may > devices_per_proc(user_defined)
284
        assert len(cur_node_endpoints) >= len(
285
            devices_per_proc
286
        ), "current trainer_endpoints size should be greater equal than acclerators size."
287
        for i in range(len(devices_per_proc)):
288
            trainer = Trainer()
289
            if device_mode == DeviceMode.GPU or device_mode == DeviceMode.ASCEND_NPU:
290
                if isinstance(devices_per_proc[i], (list, tuple)):
291 292
                    trainer.accelerators.extend(devices_per_proc[i])
                    pod.accelerators.extend(devices_per_proc[i])
293
                else:
294 295
                    trainer.accelerators.append(devices_per_proc[i])
                    pod.accelerators.append(devices_per_proc[i])
296 297
            elif device_mode == DeviceMode.XPU:
                if isinstance(devices_per_proc[i], (list, tuple)):
298
                    trainer.accelerators.extend(devices_per_proc[i])
299
                else:
300
                    trainer.accelerators.append(devices_per_proc[i])
301
            trainer.endpoint = "%s" % (cur_node_endpoints[i])
302 303 304 305 306 307 308 309 310 311 312
            trainer.rank = trainer_rank
            trainer_rank += 1

            pod.trainers.append(trainer)
        cluster.pods.append(pod)

    pod_rank = node_ips.index(node_ip)
    return cluster, cluster.pods[pod_rank]


def terminate_local_procs(procs):
K
kuizhiqing 已提交
313 314 315 316 317 318 319 320 321 322 323
    # try to terminate process by group, this happend in multiprocess senario in user process
    if os.name != 'nt':
        for p in procs:
            if p.proc.poll() is None:
                os.killpg(os.getpgid(p.proc.pid), signal.SIGTERM)
                if p.log_fn:
                    p.log_fn.close()
                logger.info("terminate process group gid:{}".format(p.proc.pid))

        time.sleep(1)

324 325 326
    for p in procs:
        if p.proc.poll() is None:
            p.proc.terminate()
327 328
            if p.log_fn:
                p.log_fn.close()
329 330
            logger.debug("terminate process id:{}".format(p.proc.pid))

331
    # wait all process terminiated
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
    time.sleep(3)
    for step in range(0, 50):
        alive = False
        for p in procs:
            if p.proc.poll() is None:  # not termniate
                os.kill(p.proc.pid, signal.SIGKILL)
                alive = True

        if not alive:
            logger.info("terminate all the procs")
            return

        time.sleep(3)

    logger.fatal("can't kill all process and exit")
    exit(1)


def get_host_name_ip():
    try:
        host_name = socket.gethostname()
        host_ip = socket.gethostbyname(host_name)
        return host_name, host_ip
    except:
        return None


def add_arguments(argname, type, default, help, argparser, **kwargs):
    """Add argparse's argument.
    Usage:
    .. code-block:: python
        parser = argparse.ArgumentParser()
        add_argument("name", str, "Jonh", "User name.", parser)
        args = parser.parse_args()
    """
J
Jiangxinz 已提交
367
    type = strtobool if type == bool else type
368 369 370 371 372 373 374 375 376 377 378
    argparser.add_argument(
        "--" + argname,
        default=default,
        type=type,
        help=help + ' Default: %(default)s.',
        **kwargs)


def find_free_ports(num):
    def __free_port():
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
W
WangXi 已提交
379 380 381 382
            # Note(wangxi): Close the connection with a TCP RST instead
            # of a TCP FIN, to avoid time_wait state.
            s.setsockopt(socket.SOL_SOCKET, socket.SO_LINGER,
                         struct.pack('ii', 1, 0))
383 384 385 386 387 388 389 390 391 392 393 394 395 396
            s.bind(('', 0))
            return s.getsockname()[1]

    port_set = set()
    step = 0
    while True:
        port = __free_port()
        if port not in port_set:
            port_set.add(port)

        if len(port_set) >= num:
            return port_set

        step += 1
W
WangXi 已提交
397
        if step > 400:
398 399 400 401 402 403 404 405
            print(
                "can't find avilable port and use the specified static port now!"
            )
            return None

    return None


406 407 408 409 410 411 412 413 414 415 416
def get_ports(num, offset):
    if os.environ.get('FLAGS_START_PORT') is None:
        ports = find_free_ports(num)
        if ports is not None:
            ports = list(ports)
    else:
        start_port = os.environ.get('FLAGS_START_PORT')
        ports = range(start_port + offset, start_port + offset + num, 1)
    return ports


417 418 419 420 421 422 423 424
def pretty_print_envs(envs, header=None):
    spacing = 2
    max_k = 40
    max_v = 45

    for k, v in envs.items():
        max_k = max(max_k, len(k))

425 426 427
    h_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(max_k, " " * spacing,
                                                          max_v)
    l_format = "    " + "|{{:>{}s}}{{}}{{:^{}s}}|\n".format(max_k, max_v)
428 429
    length = max_k + max_v + spacing

430 431
    border = "    +" + "".join(["="] * length) + "+"
    line = "    +" + "".join(["-"] * length) + "+"
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456

    draws = ""
    draws += border + "\n"

    if header:
        draws += h_format.format(header[0], header[1])
    else:
        draws += h_format.format("fleetrun Distributed Envs", "Value")

    draws += line + "\n"

    for k, v in envs.items():
        if isinstance(v, str) and len(v) >= max_v:
            str_v = "... " + v[-41:]
        else:
            str_v = v

        draws += l_format.format(k, " " * spacing, str(str_v))

    draws += border

    _str = "\n{}\n".format(draws)
    return _str


457 458 459 460 461 462 463 464 465 466 467 468 469 470
class TrainerProc(object):
    def __init__(self):
        self.proc = None
        self.log_fn = None
        self.log_offset = None
        self.rank = None
        self.local_rank = None
        self.cmd = None


def start_local_trainers(cluster,
                         pod,
                         training_script,
                         training_script_args,
471 472 473 474 475 476 477 478
                         log_dir=None,
                         envs=None):

    if envs is None:
        current_env = copy.copy(os.environ.copy())
    else:
        current_env = copy.copy(envs)

479 480 481 482
    # paddle broadcast ncclUniqueId use socket, and
    # proxy maybe make trainers unreachable, so delete them.
    # if we set them to "", grpc will log error message "bad uri"
    # so just delete them.
483 484 485
    current_env.pop("http_proxy", None)
    current_env.pop("https_proxy", None)

486 487
    ids = cluster.world_device_ids()
    res = [':'.join(ele) for ele in ids]
488 489 490 491 492 493
    procs = []
    for idx, t in enumerate(pod.trainers):
        proc_env = {
            "PADDLE_TRAINER_ID": "%d" % t.rank,
            "PADDLE_CURRENT_ENDPOINT": "%s" % t.endpoint,
            "PADDLE_TRAINERS_NUM": "%d" % cluster.trainers_nranks(),
494 495 496 497 498
            "PADDLE_TRAINER_ENDPOINTS": ",".join(cluster.trainers_endpoints()),
            "PADDLE_RANK_IN_NODE": str(idx),
            "PADDLE_LOCAL_DEVICE_IDS":
            ",".join([str(acc) for acc in t.accelerators]),
            "PADDLE_WORLD_DEVICE_IDS": ",".join(res),
499 500
        }

501
        if len(t.accelerators) > 0 and pod.device_mode == DeviceMode.GPU:
502
            proc_env["FLAGS_selected_gpus"] = "%s" % ",".join(
503 504
                [str(g) for g in t.accelerators])

505 506 507 508 509
        elif len(t.
                 accelerators) > 0 and pod.device_mode == DeviceMode.ASCEND_NPU:
            proc_env["FLAGS_selected_npus"] = "%s" % ",".join(
                [str(g) for g in t.accelerators])

510 511 512 513 514
        if len(t.accelerators) > 0:
            proc_env["FLAGS_selected_accelerators"] = "%s" % ",".join(
                [str(g) for g in t.accelerators])
        # to do: same code style in future
        if fluid.core.is_compiled_with_xpu() and len(t.accelerators) > 0:
515
            proc_env["FLAGS_selected_xpus"] = "%s" % ",".join(
516
                [str(g) for g in t.accelerators])
517

518 519 520 521
        current_env.update(proc_env)

        cmd = [sys.executable, "-u", training_script] + training_script_args

522 523 524 525 526 527 528 529
        logger.debug("start trainer proc{}  env:{}".format(cmd, current_env))

        if idx == 0:
            logger.info("Local start {} processes. First process distributed "
                        "environment info (Only For Debug): {}".format(
                            len(pod.trainers),
                            pretty_print_envs(proc_env, ("Distributed Envs",
                                                         "Value"))))
530
            logger.info(
531 532 533
                "details about PADDLE_TRAINER_ENDPOINTS can be found in "
                "{}/endpoints.log, and detail running logs maybe found in "
                "{}/workerlog.0".format(log_dir, log_dir))
534
        fn = None
K
kuizhiqing 已提交
535
        pre_fn = None if os.name == 'nt' else os.setsid
536 537
        if log_dir is not None:
            os.system("mkdir -p {}".format(log_dir))
538 539 540 541 542
            if os.path.exists("%s/endpoints.log" % log_dir):
                os.system("rm -f {}/endpoints.log".format(log_dir))
            with open("%s/endpoints.log" % log_dir, "w") as f:
                f.write("PADDLE_TRAINER_ENDPOINTS: \n")
                f.write("\n".join(cluster.trainers_endpoints()))
543
            fn = open("%s/workerlog.%d" % (log_dir, idx), "a")
K
kuizhiqing 已提交
544
            proc = subprocess.Popen(
K
kuizhiqing 已提交
545
                cmd, env=current_env, stdout=fn, stderr=fn, preexec_fn=pre_fn)
546
        else:
K
kuizhiqing 已提交
547
            proc = subprocess.Popen(cmd, env=current_env, preexec_fn=pre_fn)
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600

        tp = TrainerProc()
        tp.proc = proc
        tp.rank = t.rank
        tp.local_rank = idx
        tp.log_fn = fn
        tp.log_offset = fn.tell() if fn else None
        tp.cmd = cmd

        procs.append(tp)

    return procs


def pull_worker_log(tp):
    if tp.log_fn:
        with open(tp.log_fn.name, 'r') as fin:
            fin.seek(tp.log_offset, 0)
            for line in fin:
                try:
                    sys.stdout.write(line)
                except UnicodeEncodeError:
                    sys.stdout.write(
                        'UnicodeEncodeError occurs at this line. '
                        'Please refer to the original log file "%s"\n' %
                        tp.log_fn.name)
            tp.log_offset = fin.tell()


def watch_local_trainers(procs, nranks):
    try:
        error = False
        error_rank = []
        # wait all process finish or one error
        alive = False
        for p in procs:
            if p.log_fn and p.local_rank == 0:
                pull_worker_log(p)

            ret = p.proc.poll()
            if ret is None:
                alive = True
            elif ret != 0:
                error = True
                error_rank.append(p.rank)

        if error:
            terminate_local_procs(procs)
            exit(1)

    except KeyboardInterrupt:
        logger.warning("KeyboardInterrupt, exit")
        terminate_local_procs(procs)
K
kuizhiqing 已提交
601
        return
602 603 604 605 606
    except SystemExit:
        logger.error(
            "ABORT!!! Out of all {} trainers, the trainer process with rank={} was aborted. Please check its log.".
            format(nranks, error_rank))
        terminate_local_procs(procs)
K
kuizhiqing 已提交
607
        return
608 609 610 611 612
    except:
        logger.error(
            "ABORT!!! Out of all {} trainers, the trainer process with rank={} was aborted. Please check its log.".
            format(nranks, error_rank))
        terminate_local_procs(procs)
K
kuizhiqing 已提交
613
        return
614 615

    return alive
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646


def get_gpus(gpus):
    if gpus is None:
        gpus_num = fluid.core.get_cuda_device_count()
        res_gpus = [str(x) for x in range(0, gpus_num)]
    else:
        cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")
        if cuda_visible_devices is None or cuda_visible_devices == "":
            res_gpus = [x.strip() for x in gpus.split(',')]
        else:
            # change gpus into relative values
            # e.g. CUDA_VISIBLE_DEVICES=4,5,6,7; args.gpus=4,5,6,7;
            # therefore gpus=0,1,2,3
            cuda_visible_devices_list = cuda_visible_devices.split(',')
            for x in gpus.split(','):
                assert x in cuda_visible_devices_list, "Can't find "\
                    "your gpus %s in CUDA_VISIBLE_DEVICES[%s]."\
                    % (x, cuda_visible_devices)
            res_gpus = [
                cuda_visible_devices_list.index(x.strip())
                for x in gpus.split(',')
            ]
            logger.info("Change selected_gpus into reletive values. --ips:{} "
                        "will change into relative_ips:{} according to your "
                        "CUDA_VISIBLE_DEVICES:{}".format(
                            gpus, res_gpus, cuda_visible_devices_list))

    return res_gpus


647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
def get_xpus(xpus):
    if xpus is None:
        xpus_num = fluid.core.get_xpu_device_count()
        res_xpus = [str(x) for x in range(0, xpus_num)]
    else:
        xpu_visible_devices = os.getenv("XPU_VISIBLE_DEVICES")
        if xpu_visible_devices is None or xpu_visible_devices == "":
            res_xpus = [x.strip() for x in xpus.split(',')]
        else:
            # change xpus into relative values
            # e.g. XPU_VISIBLE_DEVICES=4,5,6,7; args.xpus=4,5,6,7;
            # therefore xpus=0,1,2,3
            xpu_visible_devices_list = xpu_visible_devices.split(',')
            for x in xpus.split(','):
                assert x in xpu_visible_devices_list, "Can't find "\
                    "your xpus %s in XPU_VISIBLE_DEVICES[%s]."\
                    % (x, xpu_visible_devices)
            res_xpus = [
                xpu_visible_devices_list.index(x.strip())
                for x in xpus.split(',')
            ]
            logger.info("Change selected_xpus into reletive values. --ips:{} "
                        "will change into relative_ips:{} according to your "
                        "XPU_VISIBLE_DEVICES:{}".format(
                            xpus, res_xpus, xpu_visible_devices_list))

    return res_xpus


X
xiongkun 已提交
676
def get_device_mode(backend):
B
Baibaifan 已提交
677 678
    if fluid.core.is_compiled_with_npu() and \
            fluid.core.get_npu_device_count() > 0:
679 680 681
        print("launch train in ascend npu mode!")
        return DeviceMode.ASCEND_NPU

X
xiongkun 已提交
682
    if backend == 'nccl' and \
683 684
            fluid.core.get_cuda_device_count() > 0:
        print("launch train in GPU mode!")
685
        return DeviceMode.GPU
686

X
xiongkun 已提交
687
    if backend == 'bkcl' and fluid.core.get_xpu_device_count() > 0:
688 689
        print("launch train in XPU mode")
        return DeviceMode.XPU
690

X
xiongkun 已提交
691 692 693 694 695
    if backend == 'gloo':
        print("launch train in CPU mode")
        return DeviceMode.CPU

    raise RuntimeError("Don't supported devices")
696 697 698 699


def get_device_proc_info(args):
    # device_mode
X
xiongkun 已提交
700
    device_mode = get_device_mode(args.backend)
701 702 703 704 705 706 707

    # devices
    devices_per_proc = []
    if device_mode == DeviceMode.GPU:
        gpus = get_gpus(args.gpus)
        if args.nproc_per_node is not None:
            assert (len(gpus) % int(args.nproc_per_node)) ==0, \
J
Jiangxinz 已提交
708
                "gpus' number:{} mod args.nproc_per_node:{} must == 0".format(len(gpus), args.nproc_per_node)
709 710 711 712 713 714 715

            n = int(len(gpus) / int(args.nproc_per_node))
            devices_per_proc = [
                gpus[i:i + n] for i in six.moves.range(0, len(gpus), n)
            ]
        else:
            devices_per_proc = gpus
716
    elif device_mode == DeviceMode.ASCEND_NPU:
717
        devices_per_proc = None
718 719 720 721
    elif device_mode == DeviceMode.XPU:
        xpus = get_xpus(args.xpus)
        if args.nproc_per_node is not None:
            assert (len(xpus) % int(args.nproc_per_node)) == 0, \
J
Jiangxinz 已提交
722
                "xpus' number:{} mod args.nproc_per_node:{} must == 0".format(len(xpus), args.nproc_per_node)
723 724 725 726 727 728 729

            n = int(len(xpus) / int(args.nproc_per_node))
            devices_per_proc = [
                xpus[i:i + n] for i in six.moves.range(0, len(xpus), n)
            ]
        else:
            devices_per_proc = xpus
730
    elif device_mode == DeviceMode.CPU:
X
xiongkun 已提交
731 732 733
        if hasattr(args, "paddle_cpuonly") and args.nproc_per_node is None:
            #NOTE (xiongkun03) set it to cpu core number
            args.nproc_per_node = multiprocessing.cpu_count()
734 735 736 737 738
        if args.nproc_per_node is None:
            devices_per_proc = [0]
        else:
            devices_per_proc = [x for x in range(0, args.nproc_per_node)]
    else:
739
        assert False, "Can't support device_mode:{}, support only cpu|gpu|xpu now.".format(
740 741 742 743 744
            device_mode)

    return (device_mode, devices_per_proc)


745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
def direct_start(args):
    # run ps-cpu mode on paddlecloud, using given envs
    cmd = [sys.executable, "-u", args.training_script] + \
        args.training_script_args
    proc = subprocess.Popen(cmd)
    proc.wait()
    return


def get_custom_endpoints(origin_endpoints, offset=0):
    """
    origin_endpoint: ip:port
    user_define_endpoint: ip:(port+offset)
    """
    assert origin_endpoints != None
    paddle_user_define_endpoints_list = []
    for ip_port in origin_endpoints.split(","):
        ip = ip_port.split(":")[0]
        port = ip_port.split(":")[1]
        new_port = int(port) + offset
        paddle_user_define_endpoints_list.append(":".join((ip, str(new_port))))
    paddle_user_define_endpoints = ",".join(paddle_user_define_endpoints_list)
    return paddle_user_define_endpoints


def cloud_ps_heter_env_set(args):
    environs = {}

    paddle_trainer_endpoints = os.getenv("TRAINER_IP_PORT_LIST", "")
    assert paddle_trainer_endpoints != None

    paddle_pserver_endpoints = os.getenv("PSERVER_IP_PORT_LIST", "")
    assert paddle_pserver_endpoints != None

    # hard code for paddlecloud custom-framework
    avilable_ports = os.getenv("TRAINER_PORTS", "").split(",")
    assert len(
        avilable_ports
783
    ) >= 2, "set paddle_ports_num >= 2 in config.ini for paddlecloud job submit"
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809

    # hard code for paddlecloud custom-framework
    trainers_num = len(paddle_pserver_endpoints.split(","))
    assert trainers_num != 0
    environs["PADDLE_TRAINERS_NUM"] = trainers_num
    environs["TRAINERS_NUM"] = trainers_num

    # hard code for paddlecloud custom-framework
    environs["PADDLE_HETER_TRAINER_IP_PORT_LIST"] = paddle_trainer_endpoints
    environs["PADDLE_PSERVERS_IP_PORT_LIST"] = paddle_pserver_endpoints
    environs["PADDLE_TRAINER_ENDPOINTS"] = get_custom_endpoints(
        paddle_pserver_endpoints, 1)
    heter_worker_num = len(paddle_trainer_endpoints.split(","))
    if (args.heter_worker_num != None) and (
            heter_worker_num != args.heter_worker_num):
        warnings.warn(
            "Your fleetrun setting: heter_worker_num is {}, but we find {} device can be used, this setting has been changed.".
            format(args.heter_worker_num, heter_worker_num))
        args.heter_worker_num = heter_worker_num

    for k, v in environs.items():
        os.environ[k] = str(v)
    logger.info("Set heter parameter server env: {}".format(
        pretty_print_envs(environs)))


810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
def get_mapped_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
                       node_mapping_ranks):
    assert type(trainer_endpoints) is list, "trainer_endpoints must be list"
    assert device_mode == DeviceMode.GPU, \
        "Only support get mapped cluster for gpu now."
    cluster = Cluster(hdfs=None)
    for node_rank, ip in enumerate(node_ips):
        pod = Pod()
        pod.rank = node_rank
        pod.addr = ip
        pod.device_mode = device_mode
        cur_node_endpoints = trainer_endpoints[node_rank]

        # choose rank from global mapped ranks and set it to the trainer.
        ranks_per_node = node_mapping_ranks[node_rank]
        for i in range(len(ranks_per_node)):
            trainer = Trainer()
            # change global rank(mapped) to local rank within each node.
            # e.g. mapped ranks of node: 3,4,7 -> 0,1,2
            local_rank = ranks_per_node.index(ranks_per_node[i])
            trainer.accelerators.append(local_rank)
            trainer.endpoint = "%s" % (cur_node_endpoints[i])
            # global mapped ranks
            trainer.rank = ranks_per_node[i]

            pod.trainers.append(trainer)
        cluster.pods.append(pod)

    pod_rank = node_ips.index(node_ip)
    return cluster, cluster.pods[pod_rank]


def get_mapped_cluster_from_args(args, device_mode):
    assert device_mode == DeviceMode.GPU, \
        "Only support get mapped cluster for gpu now."
    gpus_num = fluid.core.get_cuda_device_count()

    # parse ip-ranks json file
    json_data = None
    with args.rank_mapping_file as json_file:
        json_data = json.load(json_file)

    node_ips = []
    node_ranks_mapping = []
    ip_ranks_list = json_data['ip_ranks']
    for ip_ranks in ip_ranks_list:
        node_ips.append(ip_ranks['ip'])
        node_ranks_mapping.append(ip_ranks['ranks'])

    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
        if args.host:
            node_ip = args.host
        else:
            _, node_ip = get_host_name_ip()

    assert node_ip in node_ips, \
        "Can't find your local ip {%s} in node_ips: {%s}" % (node_ip, node_ips)
    node_rank = node_ips.index(node_ip)

    assert len(node_ranks_mapping[node_rank]) <= gpus_num, \
        "number of ranks mapped to one node should not exceed the avaiable ones."
    assert len(node_ranks_mapping) == len(node_ips), \
        "ranks length should be equal to ips length."

    logger.debug("parsed from args: node_ips:{} node_ip:{} "
                 "node_rank:{} node_ranks_mapping:{}".format(
                     node_ips, node_ip, node_rank, node_ranks_mapping[
                         node_rank]))

    # NOTE: there are different number of global mapped ranks on each node.
    free_ports = []
    trainer_endpoints = []
    for ip in node_ips:
        node_rank = node_ips.index(ip)
        if os.environ.get('FLAGS_START_PORT') is not None:
            start_port = int(os.environ.get('FLAGS_START_PORT'))
            free_ports = [
                x
                for x in range(start_port, start_port + len(node_ranks_mapping[
                    node_rank]))
            ]
        else:
            free_ports = find_free_ports(len(node_ranks_mapping[node_rank]))
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])

    return get_mapped_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
                              node_ranks_mapping)


901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
class ParameterServerLauncher(object):
    def __init__(self, args, distribute_mode):
        self.args = args
        self.distribute_mode = distribute_mode
        self.server_num = 0
        self.worker_num = 0
        self.heter_worker_num = 0

        self.server_endpoints = ""
        self.server_endpoints_ips = []
        self.server_endpoints_port = []

        self.worker_endpoints = ""
        self.worker_endpoints_ips = []
        self.worker_endpoints_port = []

        self.heter_worker_endpoints = ""
        self.heter_worker_endpoints_ips = []
        self.heter_worker_endpoints_port = []

        self.is_local = True
        self.current_node_ip = ""

        self.get_role_endpoints(args)

    def get_role_endpoints(self, args):
        # get server envs
        if args.server_num:
            self.server_num = args.server_num
            if args.servers:
                assert len(
                    args.servers.split(",")
                ) == self.server_num, "The server_num and servers doesn't match. Expect servers endpoints num epual to server_num, but received servers enpoint num: {} and server_num {}".format(
                    len(args.servers.split(",")), self.server_num)
                self.server_endpoints = args.servers
            else:
                ports = get_ports(self.server_num, 0)
                self.server_endpoints = ",".join(
                    ["127.0.0.1:" + str(x) for x in ports])
        else:
            assert args.servers != "", "The setting of Parameter-Server must has server_num or servers."
            self.server_endpoints = args.servers
            self.server_num = len(self.server_endpoints.split(","))

        # get worker envs
        if args.worker_num:
            self.worker_num = args.worker_num
            if args.workers:
                assert len(
                    args.workers.split(",")
                ) == self.worker_num, "The worker_num and workers doesn't match. Expect workers endpoints num epual to worker_num, but received workers enpoint num: {} and worker_num {}".format(
                    len(args.workers.split(",")), self.worker_num)

                self.worker_endpoints = args.workers
            else:
                ports = get_ports(self.worker_num, self.server_num)
                self.worker_endpoints = ",".join(
                    ["127.0.0.1:" + str(x) for x in ports])
        else:
            assert args.workers != "", "The setting of Parameter-Server must has worker_num or workers."
            worker_endpoints_ips = [
                x.strip().split(":")[0] for x in args.workers.split(",")
            ]
            self.worker_num = len(worker_endpoints_ips)
            worker_endpoints_len = [
                len(x.strip().split(":")) for x in args.workers.split(",")
            ]

            if 1 in worker_endpoints_len:
                # if no port value in worker_endpoints, will set default port values.
                start_port = 6170
                worker_endpoints_port = range(
                    start_port + self.server_num,
                    start_port + self.server_num + self.worker_num, 1)
                # create endpoints str
                worker_endpoints = []
                for i in range(self.worker_num):
                    worker_endpoints.append(":".join((worker_endpoints_ips[
                        i], str(worker_endpoints_port[i]))))
                self.worker_endpoints = ",".join(worker_endpoints)
            else:
                self.worker_endpoints = args.workers

984 985 986 987 988 989 990 991
        # get http_port
        if args.http_port:
            self.http_port = args.http_port
        else:
            http_port = get_ports(1, self.server_num + self.worker_num)
            http_ip = self.server_endpoints.split(",")[0].split(":")[0]
            self.http_port = http_ip + ":" + str(http_port[0])

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
        # get heter worker envs
        if self.distribute_mode == DistributeMode.PS_HETER:
            if args.heter_worker_num:
                self.heter_worker_num = args.heter_worker_num
                if args.heter_workers:
                    assert len(
                        args.heter_workers.split(",")
                    ) == self.heter_worker_num, "The heter_worker_num and heter_workers doesn't match. Expect heter_workers endpoints num epual to heter_worker_num, but received heter_workers enpoint num: {} and heter_worker_num {}".format(
                        len(args.heter_workers.split(",")),
                        self.heter_worker_num)
                    self.heter_worker_endpoints = args.heter_workers
                else:
                    ports = get_ports(self.heter_worker_num,
                                      self.server_num + self.worker_num)
                    self.heter_worker_endpoints = ",".join(
                        ["127.0.0.1:" + str(x) for x in ports])
            else:
                assert args.heter_workers != "", "The setting of Parameter-Server heter mode must has heter_worker_num or heter_workers."
                self.heter_worker_endpoints = args.heter_workers
                self.heter_worker_num = len(
                    self.heter_worker_endpoints.split(","))

        # check local or user define
        self.server_endpoints_ips = [
            x.strip().split(":")[0] for x in self.server_endpoints.split(",")
        ]
        self.worker_endpoints_ips = [
            x.strip().split(":")[0] for x in self.worker_endpoints.split(",")
        ]
        self.server_endpoints_port = [
            x.strip().split(":")[1] for x in self.server_endpoints.split(",")
        ]
        self.worker_endpoints_port = [
            x.strip().split(":")[1] for x in self.worker_endpoints.split(",")
        ]
        self.node_ips = list(
            set(self.server_endpoints_ips + self.worker_endpoints_ips))
        if self.distribute_mode == DistributeMode.PS_HETER:
            self.heter_worker_endpoints_ips = [
                x.strip().split(":")[0]
                for x in self.heter_worker_endpoints.split(",")
            ]
            self.heter_worker_endpoints_port = [
                x.strip().split(":")[1]
                for x in self.heter_worker_endpoints.split(",")
            ]
            self.node_ips = list(
                set(self.node_ips + self.heter_worker_endpoints_ips))

        if len(set(self.node_ips)) == 1:
            self.is_local = True
            self.current_node_ip = self.node_ips[0]
        else:
            self.is_local = False
            pod_ip = os.getenv("POD_IP", None)
            if pod_ip == None:
                _, self.current_node_ip = get_host_name_ip()
            else:
                self.current_node_ip = pod_ip
            assert self.current_node_ip in self.node_ips, "Can't find your local ip {%s} in args.servers and args.workers ips: {%s}" \
                % (self.current_node_ip, self.node_ips)
        self.node_rank = self.node_ips.index(self.current_node_ip)

        logger.debug(
            "parsed from args: node_ips:{} current_node_ip:{} node_rank:{}".
            format(self.node_ips, self.current_node_ip, self.node_rank))

    def start_ps(self):
        cluster = Cluster(hdfs=None)
        server_rank = 0
        worker_rank = 0
        heter_worker_rank = 0

        for node_rank, ip in enumerate(self.node_ips):
            pod = Pod()
            pod.rank = node_rank
            pod.addr = ip
            for i in range(len(self.server_endpoints_ips)):
                if ip == self.server_endpoints_ips[i]:
                    server = Trainer()
                    server.endpoint = "%s:%s" % (ip,
                                                 self.server_endpoints_port[i])
                    server.rank = server_rank
                    server_rank += 1
                    pod.servers.append(server)
            for j in range(len(self.worker_endpoints_ips)):
                if ip == self.worker_endpoints_ips[j]:
                    worker = Trainer()
                    worker.endpoint = "%s:%s" % (ip,
                                                 self.worker_endpoints_port[j])
                    worker.rank = worker_rank
                    worker_rank += 1
                    pod.workers.append(worker)
            for k in range(len(self.heter_worker_endpoints_ips)):
                if ip == self.heter_worker_endpoints_ips[k]:
                    heter_worker = Trainer()
                    heter_worker.endpoint = "%s:%s" % (
                        ip, self.heter_worker_endpoints_port[k])
                    heter_worker.rank = heter_worker_rank
                    heter_worker_rank += 1
                    pod.heter_workers.append(heter_worker)

            cluster.pods.append(pod)

        pod = cluster.pods[self.node_rank]
        self.gloo_rendezvous_dir = tempfile.mkdtemp()

        # 3. subproces start
        self.procs = {"worker": [], "server": [], "heter_worker": []}
        self.cmds = {"worker": [], "server": [], "heter_worker": []}
        self.log_fns = {"worker": [], "server": [], "heter_worker": []}

        self.start_pod_server(self.args, pod)
        self.start_pod_worker(self.args, pod)
1106 1107
        if self.distribute_mode == DistributeMode.PS_HETER:
            self.start_pod_heter_worker(self.args, pod)
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

        logger.info(
            "Please check servers, workers and heter_worker logs in {}/workerlog.*, {}/serverlog.* and {}/heterlog.*".
            format(self.args.log_dir, self.args.log_dir, self.args.log_dir))

        # 4. wait for finish training
        if len(self.procs["worker"]) > 0:
            # if node has worker procs
            # only wait worker to finish here
            for i, proc in enumerate(self.procs["worker"]):
                self.procs["worker"][i].proc.wait()
                if len(self.log_fns["worker"]) > 0:
                    self.log_fns["worker"][i].close()
            logger.info(
                "all workers exit, going to finish parameter server and heter_worker."
            )
            if len(self.procs["heter_worker"]) > 0:
                for i, proc in enumerate(self.procs["heter_worker"]):
                    self.log_fns["heter_worker"][i].close()
                    self.procs["heter_worker"][i].proc.terminate()
                logger.info("all heter_worker are killed")

            if len(self.procs["server"]) > 0:
                for i, proc in enumerate(self.procs["server"]):
                    self.log_fns["server"][i].close()
                    self.procs["server"][i].proc.terminate()
                logger.info("all parameter server are killed")

        else:
            # if node has not worker procs
            # blocking training process
            if len(self.procs["server"]) > 0:
                for i, proc in enumerate(self.procs["server"]):
                    self.procs["server"][i].proc.wait()

            if len(self.procs["heter_worker"]) > 0:
                for i, proc in enumerate(self.procs["heter_worker"]):
                    self.procs["heter_worker"][i].proc.wait()

        if os.path.exists(self.gloo_rendezvous_dir):
            shutil.rmtree(self.gloo_rendezvous_dir)

    def start_pod_server(self, args, pod):
        default_env = os.environ.copy()
        current_env = copy.copy(default_env)
        current_env.pop("http_proxy", None)
        current_env.pop("https_proxy", None)
        for idx, cur_server in enumerate(pod.servers):
            proc_env = {
                "PADDLE_PSERVERS_IP_PORT_LIST": self.server_endpoints,
                "PADDLE_TRAINER_ENDPOINTS": self.worker_endpoints,
                "PADDLE_HETER_TRAINER_IP_PORT_LIST":
                self.heter_worker_endpoints,
                "PADDLE_PORT": cur_server.endpoint.split(":")[1],
                "TRAINING_ROLE": "PSERVER",
                "PADDLE_TRAINERS_NUM": str(self.worker_num),
                "POD_IP": cur_server.endpoint.split(":")[0],
L
lilong12 已提交
1165
                "PADDLE_WITH_GLOO": str(os.getenv("PADDLE_WITH_GLOO", "0")),
1166
                "PADDLE_GLOO_RENDEZVOUS": "3",
1167 1168
                "PADDLE_GLOO_FS_PATH": self.gloo_rendezvous_dir,
                "PADDLE_GLOO_HTTP_ENDPOINT": self.http_port
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
            }
            current_env.update(proc_env)

            cmd = [sys.executable, "-u", args.training_script
                   ] + args.training_script_args
            self.cmds["server"].append(cmd)

            if idx == 0:
                logger.info(
                    "Local server start {} processes. First process distributed "
                    "environment info (Only For Debug): {}".format(
                        len(pod.servers),
                        pretty_print_envs(proc_env, ("Distributed Envs", "Value"
                                                     ))))

            if args.log_dir is not None:
                os.system("mkdir -p {}".format(args.log_dir))
                fn = open("%s/serverlog.%d" % (args.log_dir, idx), "w")
                self.log_fns["server"].append(fn)
                proc = subprocess.Popen(
                    cmd, env=current_env, stdout=fn, stderr=fn)
            else:
                proc = subprocess.Popen(cmd, env=current_env)

            tp = TrainerProc()
            tp.proc = proc
            tp.rank = cur_server.rank
            tp.local_rank = idx
            tp.log_fn = fn
            tp.log_offset = fn.tell() if fn else None
            tp.cmd = cmd

            self.procs["server"].append(tp)

    def start_pod_worker(self, args, pod):
        default_env = os.environ.copy()
        current_env = copy.copy(default_env)
        current_env.pop("http_proxy", None)
        current_env.pop("https_proxy", None)

        heter_device_num = 0
        device_list = []
        if fluid.core.is_compiled_with_cuda():
            device_list = get_gpus(args.gpus)
            heter_device_num = len(device_list)
        elif fluid.core.is_compiled_with_xpu():
            heter_device_num = fluid.core.get_xpu_device_count()
            device_list = [str(x) for x in range(0, heter_device_num)]

        for idx, cur_worker in enumerate(pod.workers):
1219 1220
            device_id = "0" if heter_device_num == 0 else str(device_list[
                idx % heter_device_num])
1221 1222 1223 1224 1225 1226 1227 1228
            proc_env = {
                "PADDLE_PSERVERS_IP_PORT_LIST": self.server_endpoints,
                "PADDLE_TRAINER_ENDPOINTS": self.worker_endpoints,
                "PADDLE_TRAINERS_NUM": str(self.worker_num),
                "PADDLE_HETER_TRAINER_IP_PORT_LIST":
                self.heter_worker_endpoints,
                "TRAINING_ROLE": "TRAINER",
                "PADDLE_TRAINER_ID": str(cur_worker.rank),
L
lilong12 已提交
1229
                "PADDLE_WITH_GLOO": str(os.getenv("PADDLE_WITH_GLOO", "0")),
1230
                "PADDLE_GLOO_RENDEZVOUS": "3",
1231 1232 1233 1234 1235
                "PADDLE_GLOO_FS_PATH": self.gloo_rendezvous_dir,
                "FLAGS_selected_gpus": "0",
                "FLAGS_selected_xpus": "0",
                "CUDA_VISIBLE_DEVICES": device_id,
                "XPU_VISIBLE_DEVICES": device_id,
1236
                "PADDLE_GLOO_HTTP_ENDPOINT": self.http_port
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
            }
            current_env.update(proc_env)

            cmd = [sys.executable, "-u", args.training_script
                   ] + args.training_script_args
            self.cmds["worker"].append(cmd)

            if idx == 0:
                logger.info(
                    "Local worker start {} processes. First process distributed "
                    "environment info (Only For Debug): {}".format(
                        len(pod.workers),
                        pretty_print_envs(proc_env, ("Distributed Envs", "Value"
                                                     ))))

            if args.log_dir is not None:
                os.system("mkdir -p {}".format(args.log_dir))
                fn = open("%s/workerlog.%d" % (args.log_dir, idx), "w")
                self.log_fns["worker"].append(fn)
                proc = subprocess.Popen(
                    cmd, env=current_env, stdout=fn, stderr=fn)
            else:
                proc = subprocess.Popen(cmd, env=current_env)

            tp = TrainerProc()
            tp.proc = proc
            tp.rank = cur_worker.rank
            tp.local_rank = idx
            tp.log_fn = fn
            tp.log_offset = fn.tell() if fn else None
            tp.cmd = cmd

            self.procs["worker"].append(tp)

    def start_pod_heter_worker(self, args, pod):
        default_env = os.environ.copy()
        current_env = copy.copy(default_env)
        current_env.pop("http_proxy", None)
        current_env.pop("https_proxy", None)

        heter_device_num = 0
        device_list = []
        if fluid.core.is_compiled_with_cuda():
            device_list = get_gpus(args.gpus)
            heter_device_num = len(device_list)
        elif fluid.core.is_compiled_with_xpu():
            heter_device_num = fluid.core.get_xpu_device_count()
            device_list = [str(x) for x in range(0, heter_device_num)]
1285 1286
        if heter_device_num == 0:
            return
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298

        for idx, cur_heter_worker in enumerate(pod.heter_workers):
            device_id = str(device_list[idx % heter_device_num])
            proc_env = {
                "PADDLE_PSERVERS_IP_PORT_LIST": self.server_endpoints,
                "PADDLE_TRAINER_ENDPOINTS": self.worker_endpoints,
                "PADDLE_HETER_TRAINER_IP_PORT_LIST":
                self.heter_worker_endpoints,
                "PADDLE_PORT": cur_heter_worker.endpoint.split(":")[1],
                "TRAINING_ROLE": "HETER_TRAINER",
                "PADDLE_TRAINERS_NUM": str(self.worker_num),
                "POD_IP": cur_heter_worker.endpoint.split(":")[0],
L
lilong12 已提交
1299
                "PADDLE_WITH_GLOO": str(os.getenv("PADDLE_WITH_GLOO", "0")),
1300
                "PADDLE_GLOO_RENDEZVOUS": "3",
1301 1302 1303 1304 1305
                "PADDLE_GLOO_FS_PATH": self.gloo_rendezvous_dir,
                "FLAGS_selected_gpus": "0",
                "FLAGS_selected_xpus": "0",
                "CUDA_VISIBLE_DEVICES": device_id,
                "XPU_VISIBLE_DEVICES": device_id,
1306
                "PADDLE_GLOO_HTTP_ENDPOINT": self.http_port
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
            }
            current_env.update(proc_env)

            cmd = [sys.executable, "-u", args.training_script
                   ] + args.training_script_args
            self.cmds["heter_worker"].append(cmd)

            if idx == 0:
                logger.info(
                    "Local heter_worker start {} processes. First process distributed "
                    "environment info (Only For Debug): {}".format(
                        len(pod.heter_workers),
                        pretty_print_envs(proc_env, ("Distributed Envs", "Value"
                                                     ))))

            if args.log_dir is not None:
                os.system("mkdir -p {}".format(args.log_dir))
                fn = open("%s/heterlog.%d" % (args.log_dir, idx), "w")
                self.log_fns["heter_worker"].append(fn)
                proc = subprocess.Popen(
                    cmd, env=current_env, stdout=fn, stderr=fn)
            else:
                proc = subprocess.Popen(cmd, env=current_env)

            tp = TrainerProc()
            tp.proc = proc
            tp.rank = cur_heter_worker.rank
            tp.local_rank = idx
            tp.log_fn = fn
            tp.log_offset = fn.tell() if fn else None
            tp.cmd = cmd

            self.procs["heter_worker"].append(tp)
X
xiongkun 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381


def check_backend(backend):
    if backend not in ['nccl', 'gloo', 'bkcl', 'auto']:
        raise ValueError(
            "paddle.distributed initialize error, "
            "backend argument can only be one of 'nccl', 'gloo', 'bkcl', 'auto', but got %s"
            % backend)

    if backend == 'nccl' and not fluid.core.is_compiled_with_cuda():
        raise ValueError(
            "paddle.distributed initialize error, "
            "your paddle is not compiled with cuda but you assign 'nccl' as backend."
        )

    if backend == 'bkcl' and not fluid.core.is_compiled_with_xpu():
        raise ValueError(
            "paddle.distributed initialize error, "
            "your paddle is not compiled with xpu but you assign 'bkcl' as backend."
        )


def block_windows_and_macos(backend):
    if backend != 'gloo': return
    if utils.OS_NAME.startswith('darwin'):  # MACOS , block
        raise ValueError(
            "You are going to using gloo on macos, but currently is not supported"
        )
    if utils.IS_WINDOWS:  # MACOS , block
        raise ValueError(
            "You are going to using gloo on windows, but currently is not supported"
        )


def get_backend_by_compile_flag():
    if fluid.core.is_compiled_with_cuda():
        return 'nccl'

    if fluid.core.is_compiled_with_xpu():
        return 'bkcl'

    return 'gloo'